
1

An Accurate and Efficient Large-scale Regression
Method through Best Friend Clustering

Kun Li ID , Liang Yuan, Member, IEEE, Yunquan Zhang, Senior Member, IEEE, and Gongwei Chen ID

Abstract—As the data size in Machine Learning fields grows exponentially, it is inevitable to accelerate the computation by utilizing the
ever-growing large number of available cores provided by high-performance computing hardware. However, existing parallel methods for
clustering or regression often suffer from problems of low accuracy, slow convergence, and complex hyperparameter-tuning. Furthermore,
the parallel efficiency is usually difficult to improve while striking a balance between preserving model properties and partitioning
computing workloads on distributed systems. In this paper, we propose a novel and simple data structure capturing the most important
information among data samples. It has several advantageous properties supporting a hierarchical clustering strategy that contains
well-defined metrics for determining optimal hierarchy, balanced partition for maintaining the clustering property, and efficient
parallelization for accelerating computation phases. Then we combine the clustering with regression techniques as a parallel library and
utilize a hybrid structure of data and model parallelism to make predictions. Experiments illustrate that our library obtains remarkable
performance on convergence, accuracy, and scalability.

Index Terms—Distributed Machine Learning, Scalable Algorithm, Large-scale Clustering, Parallel Regression

✦

1 INTRODUCTION

MAchine Learning (ML) has become one of the cru-
cial mainstays of information technology over past

decades, albeit commonly hidden, part of modern life
pervasively. As technologies based on machine learning like
artificial intelligence (AI) rise prominently, the data size that
researchers have to study with is also growing exponen-
tially [12], [31]. This makes training time for models range
from hours to weeks, which poses intense pressures across
computation, networking, and storage. Thus, accelerating
model training is an important research challenge within the
machine learning field.

Today, High Performance Computing (HPC) and parallel
techniques catalyze the modern revolution in machine
learning. More and more companies are turning to HPC
as the solution for ML-based productivity and AI-enabled in-
novation, such as Google Cloud TPU, Amazon AWS AIHPC,
and Microsoft Azure. Within the field of machine learning,
clustering and regression are two fundamental and crucial
techniques, which are distinguished as the representative
unsupervised and supervised learning methods [14], [28].

Clustering methods divide data into different groups by
data attributes. Various types of clustering are proposed
for providing a range of different uses [25], [30], [37], [40],
[46]. Basically, they can be distinguished as hierarchical
(nested) versus partitional (unnested) methods, where Ag-

• Kun Li, Liang Yuan, and Yunquan Zhang are with the State Key Laboratory
of Computer Architecture, Institute of Computing Technology, Chinese
Academy of Sciences (CAS), Beijing 100190, China.
E-mail: likungw@gmail.com, yuanliang@ict.ac.cn, zyq@ict.ac.cn.

• Gongwei Chen is with the Key Laboratory of Intelligent Information
Processing, Institute of Computing Technology, Chinese Academy of
Sciences (CAS), Beijing 100190, China.
E-mail: gongwei.chen@vipl.ict.ac.cn.

• Kun Li and Gongwei Chen are also with the School of Computer Science
and Technology, University of Chinese Academy of Sciences (UCAS),
Beijing 100190, China.

(Corresponding author: Liang Yuan.)

glomerative Hierarchical Clustering (AHC) and K-Means
are two fundamental methods that are widely used [43],
[53]. AHC and its variants make a set of nested clusters
organized as a hierarchical tree [36]. K-Means is simple
and efficient on a variety of problems [32], [33]. Recently,
Graph Clustering (GC) such as Minimum Spanning Tree
clustering (MSTC) also stands prominently for detecting
clusters with irregular boundaries by graph theory. It uses
Prim’s algorithm or Kruskal’s algorithm to construct a
minimum spanning tree (MST) first, sorts edges to remove
inconsistent ones for connected components, and repeats
until a threshold loops [21], [27].

Regression involves intensive computations in the model
training phase inherently. A standard distributed method for
regression is to map the computation on p-processor system
evenly and then perform a global reduction regularly [39].
Generally, these distributed regression methods work poorly
in scaling cases due to busy synchronization sweeps. Well-
known approaches use Divide-and-Conquer (DC) algorithm
to optimize the parallel process. The basic idea of Divide-
and-Conquer Regression (DCR) is to divide the data into p
similar parts, generate p similar training models, and average
p models for a final solution. The memory and computation
overhead is reduced by DCR, such as DCKRR on Kernel
Ridge Regression (KRR) and DCSVM on Support Vector
Regression (SVR) [24], [51]. However, the accuracy is not
guaranteed in various cases [49].

More recent work is the parallel optimization for KRR:
Balanced KRR v2 (BKRR2), which is the latest version
by researchers [48]. BKRR utilizes K-Means to partition n
samples to p clusters, where p is the number of processes.
Each cluster contains n/p dispatched samples, and then p
models are generated correspondingly. To guarantee the
load-balance, no additional sample will be added to it if
the clustering center contains n/p dispatched samples by
K-Means. Regression is then performed on each distributed

https://orcid.org/0000-0002-1013-1325
https://orcid.org/0000-0002-0634-6075

2

models, and results are gathered for an average. Based on
the BKRR, BKRR2 is proposed to improve the accuracy by
training models independently without a global reduction.
Although BKRR2 proves that it could achieve higher accuracy
and efficiency than the current fastest method [48], [49],
various problems are still not clearly addressed.

First, the accuracy and the convergence for K-Means are
not always satisfactory on large dataset. It needs at least thou-
sands of times for convergence in the experiments of BKRR2.
Since the clustering center is changing dynamically, the
volume of transferred data is also massive in each iteration.
BKRR2 also avoids confronting this problem directly and
implements K-Means only with a process. Second, since K is
a hyperparameter to assign #clusters in K-Means, its value is
simply set to #processes in BKRR2 and that is not robust. The
clustering results deviate from the real distribution drastically
as #processes change, which leads to a poor accuracy in
many cases. Even worse, the training time increases with
more generated clusters assigned by increasing processes,
which is essentially not adequate for large-scale training.
Furthermore, BKRR2 achieves load-balance at the cost of
accuracy. In the process of clustering, samples are traversed
and dispatched to their nearest cluster center. However, a
more relevant sample to some ”full” cluster cannot be added
to it for its late traversal order by the design of BKRR2.

In this paper, we design an efficient parallel regression
library to address the pending problems in existing methods.
First, we propose a new graph structure called Best Friend
Graph to capture the most important information among
the data samples. Based on the proposed structure, a novel
clustering method, Best Friend Clustering (BFC), is presented.
It reduces computation over AHC approaches, improves
accuracy to K-Means methods, and enhances scalability
than MST-based algorithms. Then we dig out the inherent
properties of the graph structure and design a well-defined
metric to determine the optimal aggregation.

Next, a balanced partition algorithm for data parallelism
is proposed based on the idea of backtracking, which could
reflect more characters on the real distribution. Instead of
deleting edges by a non-increasing order serially in MST-
based work [7], [21], we gather samples in the same group
by swapping their pointers simply. The larger clusters are
then split by backtracking and smaller clusters are merged
from the optimal hierarchy to obtain total n/p samples in
each process. Thus, the storage for edges is released, and the
procedure could be parallelized easily.

Furthermore, Best Friend Clustering is applied to parallel
regression. Although the above-proposed methods can be
used separately, we combine them with multiple regres-
sion techniques as a complete parallel regression library.
Each process generates single or multiple training models
independently according to the clustering results. For each
test sample, it selects the best one from these models in
the prediction phase. Thus, model parallelism is achieved
efficiently in each process. To be as general as possible, our
library has no specific limits on the dimensionality of the
dataset and the format of the distance measure.

At last, we present an experimental study on our Best
Friend Clustering with three different clustering methods.
Then the accuracy and scalability are analyzed for our re-
gression library with state-of-the-art work. The encouraging

performance demonstrates the distinct superiority of the
proposed methods on distributed systems.

The main contributions in this paper include:

• A novel Best Friend Clustering method is proposed
for large-scale clustering, which is accurate, fast, and
parameter-free.

• Theoretical properties of the proposed clustering
method are studied thoroughly, and we design a
strategy to decide the optimal clustering aggregation
through a well-defined metric based on analytical
properties.

• We optimize the clustering on distributed systems,
apply it to parallel regression, and propose a partition
algorithm for load-balancing and spatial locality.

• By utilizing a hybrid structure of data and model
parallelism, we combine the proposed methods with
regression techniques as a parallel library. It shows
a remarkable performance on convergence, accuracy,
and scalability.

2 BACKGROUND

2.1 Regression Techniques

Regression is a supervised machine learning technique that is
utilized to investigate the relationship between one or more
predictors and response variables for a best-fit curve. The
obtained curve can be then employed for making predictions
on new data points. Basically, there are various algorithms
that are utilized to build a regression model, and in our
paper, three extensively-used techniques are molded out and
implemented in our library.

2.1.1 Linear regression
Linear regression is a widely-used method to find the linear
relationship between the dependent variable and one or more
independent variables by employing a straight line. Given
a d-dimensional training sample xi and the corresponding
measured regressand yi, the objective in training phase is
to find a w such that yi ≈ wT · xi. This can be formulated
as a least squares problem in Equation 1 to find the optimal
line by minimizing the sum of the residuals. Then for a test
sample x∗, we can utilize the training model to predict the
regressand by y∗ = wT · x∗, and evaluate the accuracy with
Mean Squared Error (MSE) method.

wopt = argmin
1

2

∑n

i
(yi −wT xi)2 (1)

2.1.2 Kernel Ridge regression
To avoid overfitting and solve some ill-posed problems,
L2 regularization with a positive parameter λ is used in
Equation 2, which is called ridge regression.

wopt = argmin
1

2

∑n

i
(yi −wT xi)2 +

1

2
λ||w||2 (2)

Moreover, kernel method is widely utilized to map samples
to a high dimensional space using a nonlinear mapping.
Thus the Kernel Ridge Regression (KRR) is presented by
combining ridge regression with kernel method, and it learns
model in high dimensional space for a better prediction

3

accuracy. The solution vector α can be written in closed form
in Equation 3,

α = (K + λIN)−1y (3)

where K is a n-by-n kernel matrix constructed by Ki,j =
ϕ(xi, xj), y is the corresponding n-by-1 regressand vector.
Then α is employed to predict regressands in prediction
phase as Equation 4.

y∗ =
∑N

i=1
αik(x

∗, xi) (4)

2.1.3 Support Vector Regression

Support Vector Machine (SVM) can also be used as a
regression method called Support Vector Regression (SVR),
holding all the key features such as maximal margin that
characterize the algorithm. Both KRR and SVR can learn a
non-linear model by using kernel tricks, while they differ in
the loss functions, i.e., ridge and epsilon-insensitive loss
respectively. In the case of SVR, a margin of tolerance
(epsilon) is set to the SVM, and we can tune it to gain
the desired accuracy of our model. The solution is given
in Equation 5 and constrained to Equation 6, where w is the
magnitude of the normal vector to the surface that is being
approximated.

wopt = argmin
1

2
||w||2 (5)

|yi −wxi| ≤ ε (6)

2.2 Clustering Methods

Many clustering methods are proposed in the literature
to recognize the cluster of different characteristics. In this
subsection, AHC, K-Means, and MSTC are introduced briefly.

2.2.1 Agglomerative Hierarchical Clustering

Agglomerative Hierarchical Clustering is an important cat-
egory of clustering methods, which makes a set of nested
clusters organized as a hierarchical tree. The Basic algorithm
consists of following key steps: start with individual samples
as clusters, merge two nearest clusters successively until
one cluster obtained. Algorithm 1 describes AHC formally.
Generally AHC algorithm can produce a better-quality
clustering result. However, the slow convergence speed,
extensive computation operations, and expensive storage
requirements make scaling problematic on a larger dataset.

Algorithm 1 Agglomerative Hierarchical Clustering Algo-
rithm

1: Let each sample be a cluster.
2: repeat
3: Merge the nearest two clusters as a new one.
4: Update the proximity matrix.
5: until Only one cluster remains.

2.2.2 K-Means
K-Means is one of the most prominent partitional approaches
for clustering. The basic steps are illustrated in Algorithm
2. K-Means is simple and efficient on a variety of problems.
However, non-globular clusters or clusters of different densi-
ties and sizes cannot be solved by K-Means, and the outliers
in data can also affect results. Furthermore, K value is a
hyperparameter specified in advance, which determines the
quality of clustering significantly.

Algorithm 2 K-Means Algorithm
1: Choose K initial sample as centroids.
2: repeat
3: Assign each sample to its nearest centroid to form K

clusters.
4: Recompute K centroids.
5: until Centroids remains unchange.

2.2.3 MST-based Clustering
The basic idea of MSTC is as follows. First, set a threshold
cluster size k. Then construct MSTs using classic MST
algorithms until k clusters obtained. At last, delete the
maximum edge iteratively to obtain exactly k clusters. The
algorithm can obtain a comparatively better result on clusters
with irregular boundaries, while it is highly sequential and
computationally intensive [7].

Algorithm 3 MST-based Clustering Algorithm
1: Compute and sort the pairwise distances.
2: repeat
3: Run MST algorithm to form clusters.
4: until k clusters.

3 METHOD

In this section, we first propose a simple, efficient, and
accurate method for large-scale clustering. Section 3.1 and
Section 3.2 provide the definition of Best Friend Graph and
properties of this new method. They serve as the fundamental
data structure of our method. Then a strategy to decide the
optimal clustering aggregation through a well-defined metric
is presented in Section 3.3. Next, we use a hybrid structure
of data and model parallelism for parallel regression. Section
3.4 presents the detailed description of balanced partition for
data parallelism. It achieves load-balance by utilizing merge
and split operations on the hierarchical clustering structure.
At last, the parallel regression method achieved with model
parallelism is described in Section 3.5.

3.1 Best Friend Clustering

Clustering is intuitively inspired by the most fundamental
social relation, friend circle, for detecting the potential
groupings in the data. Existing clustering methods normally
consider relationships between all pairs of samples. This
leads to a slower convergence rate and a large overhead,
which are not adequate for large-scale datasets on distributed
systems. In reality, many of the relationships can be ignored.

4

Our clustering method arises from the observation that peo-
ple often make a decision with their best friends. Therefore,
we simplify the friend cycle by only considering the most
important best friend relationship.

A Best Friend Graph G(V,E) is defined on a dataset of
n input samples for clustering. The vertex set V consists of
these n data elements. Each vertex i ∈ V is associated with
a directed best friend edge (i, j) where the destination j is
its best friend, i.e. i’s nearest neighbor. Note that if there
exist multiple nearest neighbors with the same distance to i,
we simply choose the vertex with the smallest lexicographic
order as the only best friend of i. Therefore, a Best Friend
Graph G(V,E) with |V | = n vertices contains n directed
best friend edges. Figure 1 illustrates a tractable example of
the Best Friend Graph. We take 12 representative cities from
Global Cities Index [45] as a study case. The geographical
distances among them are calculated and 12 directed edges
identifying the best friend relationships among them.

New York City

Tokyo
Los Angeles

London
Beijing Chicago

Paris

Hong Kong

Singapore

Shanghai San Francisco
Washington��'�&�

Fig. 1. Best Friend Graph with a case study of global cities.

Based on the Best Friend Graph, a cluster is defined as
a group of connected vertices. Evidently, the city samples
are clustered into four groups by related friends in the first
step. The clusters distinguished by Best Friend Clustering
are consistent with the geographic taxonomies. For example,
Los Angeles and San Francisco are recognized as the Western
US. Chicago, Washington DC, and New York City are then
classified as the Eastern US.

Let Tk(Vk, Ek) be a connected subgraph k in G and
vk = |Vk|. Specifically, each new cluster is represented by
a centroid xk. The centroid xk representing Tk is updated
by averaging all vertices xi that have been assigned to this
cluster in Equation 7. To find it arithmetically, one computes
the arithmetic mean of the xi’ coordinates separately for each
dimension.

xk =
1

vk

∑
xi∈Vk

xi (7)

We can then build a new Best Friend Graph of all
generated cluster centers in the previous step. In our example,
the four clusters are further combined into two groups as
illustrated in Figure 2. We recursively apply this approach to
the new clusters until there is only one cluster containing all
the samples. The whole process converges quickly in loga-
rithmic time as a cluster contains at least two samples in each
hierarchy. Furthermore, the computation and communication
time are reduced progressively with hierarchies.

3.2 Properties
In this subsection, we analyze several crucial properties of
Best Friend Graph, which are the basis to decide the optimal
aggregation.

Asia

New York City

Tokyo
Los Angeles

London
Beijing Chicago

Paris

Hong Kong

Singapore

Shanghai San Francisco
Washington��'�&�
Eastern U.S.

Western U.S.

Europe

Fig. 2. Best Friend Clustering with a case study of global cities.

Lemma 3.1. There exists at least one directed cycle in a Best
Friend Graph.

Proof. If we replace all directed edges with undirected
edges, a Best Friend Graph becomes an undirected graph
with n vertices and n edges. By induction, we can easily
prove that it involves at least one undirected cycle. Trans-
forming the edges on the cycle back to directed edges, we
obtain a directed cycle. Otherwise, there must be one vertex
i associated with two best friend edges (i, ∗) on the cycle, a
contradiction to the best friend graph definition.
Lemma 3.2. Each weakly connected component of a Best

Friend Graph contains one and only one directed cycle.

Proof. Each weakly connected component G′(V ′, E′) of
a Best Friend Graph G(V,E) is still a Best Friend Graph
according to the definition. With Lemma 3.1, G′ contains
at least one cycle. Thus we obtain |E′| ≥ |V ′|. We must
have |E′| = |V ′|, i.e. only one cycle in G′, otherwise will
get |E| > |V | = n, contradicting the Best Friend Graph
definition.
Lemma 3.3. The edge weights on a directed path of a Best

Friend Graph are non-increasing.

This is obvious from the definition. For example, for
the directed path i → j → k, we have ω(i, j) ≥ ω(j, k),
otherwise j’s best friend should be i rather than k.
Lemma 3.4. The length of a directed cycle in a Best Friend

Graph is two and the weights of edges on a cycle are
identical.

Proof. Assume there is only one nearest neighbor to
each vertex, i.e. the weight ω of a best friend edge (i, j)
is strictly smaller than the distance between i and other
vertex ω(i, j) < ω(i, k), k ̸= i, j. If there exists a directed
cycle involving more than two vertices, e.g. i→ j → k → i,
we have ω(i, j) > ω(j, k) > ω(k, i) = ω(i, k). Thus the best
friend edge of i should be (i, k), a contradiction.

Otherwise, we have ω(i, j) ≥ ω(j, k) ≥ ω(k, i) = ω(i, k).
Since (i, j) is a best friend edge, we obtain ω(i, j) = ω(i, k)
and ω(i, j) = ω(j, k) = ω(k, i). According to the smallest
lexicographic order rule in Best Friend Graph definition, we
get an inconsistent lexicographic order j ≺ k ≺ i ≺ j.
Corollary 3.1. Starting from any vertex and traversing along

the Best Friend Graph will enter the cycle.

Definition 3.1. A best friend forest F (V,E) of a Best Friend
Graph G(V,E′) is defined by replacing all directed edges
with undirected ones and removing one edge on each
cycle.

Theorem 3.1. A connected component, a tree T (VT , ET) in
a best friend forest is a minimum spanning tree of the
corresponding complete graph G(VT , E).

5

New York City

Tokyo
Los Angeles

London
Beijing Chicago

Paris

Hong Kong

Singapore

Shanghai San Francisco
Washington��'�&�

Fig. 3. Best friend forest with a case study of global cities.

Proof. Let T ∗(VT , ET∗) be the MST of the complete graph
G(VT , E). For an edge (i, j) in ET∗ − ET , we obtain an
undirected path in T (VT , ET). According to Corollary 3.1,
the corresponding directed path connecting i and j in the
Best Friend Graph is one of the following three cases: i →
· · · → j, i ← · · · ← j and i → · · · → k ← · · · ← j. Since
adding (i, j) it to T (VT , ET) leads to a cycle, there must be an
edge (u, v) in the path that does not belong to T ∗(VT , ET∗).
In any of the three path cases, we have ω(i, j) ≥ ω(u, v)
according to Lemma 3.3. We must have ω(i, j) = ω(u, v),
otherwise we will get spanning tree with a smaller weight by
replacing (i, j) with (u, v). This contradicts the assumption
that T ∗(VT , ET∗) is a MST. Repeat the process for all edges
in (i, j) in ET∗ −ET , we will obtain T with a same weight
to T ∗. Thus T (VT , ET) is also a MST.

Figure 3 shows the corresponding best friend forest of
the example in Figure 1. With Theorem 3.1, each connected
component in Figure 3 is a minimum spanning tree, and the
graph is a minimum spanning forest F (V,E).

3.3 Optimal Aggregation

The target of clustering is expected to make high intracluster
compactness and intercluster dispersion [4]. Since a set of
clustering hierarchies are built, we turn to choose an optimal
clustering hierarchy as the input to our regression model
by using a rational metric. As discussed in Theorem 3.1,
Best Friend Clustering specifies a minimum spanning forest
for each hierarchy intrinsically, and it connects all scattered
clusters as a whole network. Thus, the clustering validity
is analyzed based on the MST network, where metrics are
quantified by the properties of MST.
Definition 3.2. Let a Ti = (Vi, Ei) denote a minimum

spanning tree in a best friend forest F . The intracluster
compactness ci for Ti is defined as:

ci =
1

ei

∑
(j,k)∈Ei

ω(j, k), (8)

where ei = |Ei|.

Algorithm 4 shows the procedure of the best friend forest
construction and the distance calculation of each connected
component. The first function finds all best friend edges and
records them in a global array. The second function traverses
all connected components. It finds an unvisited node as a
root of a MST and feeds it the third function which utilizes
the Depth-First Search (DFS) to traverse all the nodes in the
MST and accumulate the number and their weights in two
global arrays c[] and e[].
Definition 3.3. Let a best friend forest Fk be the kth hierarchy

produced by Best Friend Clustering. Assume that there

Algorithm 4 Best Friend Forest Construction
Require: visited[] = 0, c[] = 0, e[] = 0,mst num = 0

1: function INITIALIZEBESTFRIENDFOREST
2: for i = 0→ n− 1 do
3: j = findBestFriend(i)
4: addEdge(i, j, ω(i, j))
5: end for
6: end function
7: function TRAVERSEMST
8: for i = 0→ n− 1 do
9: if !visited[i] then

10: SEARCH(i)
11: c[mst num]/ = e[mst num]
12: mst num = mst num+ 1
13: end if
14: end for
15: end function
16: function SEARCH(i)
17: visited[i] = 1.
18: e[mst num]+ = 1
19: while getNextNeighbor(i,&k) do
20: if (!visited[k]) then
21: c[mst num]+ = getEdgeWeight(i, k)
22: SEARCH(k)
23: end if
24: end while
25: end function

are m clusters T1, T2, ..., Tm in Fk, and cluster Ti contains
vi samples. Then the intercluster dispersion di for Ti is
defined as:

di = min{d(xi, xj)|1 ≤ j ≤ m, j ̸= i}, (9)

where xi and xj are the new cluster centers and d(xi, xj) is
the Euclidean distance between cluster Ti and Tj .

To determine the optimal clustering hierarchy, a metric
measured by hierarchical clustering index (HCI) is defined
in Definition 3.4. It combines the intracluster compactness ci
and the intercluster dispersion di.

Definition 3.4. Let MSTs T1, T2, ..., Tm denote clusters in a
best friend forest Fk for the kth dendrogram hierarchy
dendrogram produced by Best Friend Clustering. Then
the HCI(k) is defined as a linear combination of the
intracluster compactness and intercluster dispersion:

HCI(k) =
1

m

∑m

i=1
(
di − ci
di + ci

), (10)

and the optimal clustering hierarchy is:

kopt = argmax{HCI(k)}. (11)

Figure 4 illustrates the computing process of HCIs for
the global cities example. With scaled distance denoted on
each edge, hierarchical MST results are depicted in Figure 4
for the first two clustering hierarchies. From the Definition
3.2 for intracluster compactness, we have c1 = 1, c2 =
(3 + 5 + 4 + 7)/4 = 4.75, c3 = 2, c4 = (2 + 1)/2 = 1.5
in S1, and c1 = 30, c2 = 16 in S2. Since similar vertices
are merged iteratively, an important observation is that the

6

Step 1: S Step 2: S

1

3 5

7
4

2
1

2
1630

T2

T1

T3

T4

T1 T2

1 2

Fig. 4. Hierarchical MST results by Best Friend Clustering.

di for cluster i in Sk is exactly the best friend weight for
vertex i in Sk+1. For instance, d1 = d2 = 30, d3 = d4 = 16
are obtained in S1 by the information acquired in S2. Thus,
we have HCI(1) = 1

4

∑4
i=1(

di−ci
di+ci

) = 0.82 by Equation 10.
Similarly, we obtain the value of HCI(2) = 0.51 with the
new c1 = 30, c2 = 16, and d1 = d2 = 70 in S2. The specific
values of d1 and d2 are measured by the distance between
two new merged clusters, and it is acquired from the new
centroids calculated in S3. Here we give the values d1 =
d2 = 70 in S2 straightforward for brevity. Apparently, the
clustering result of S1 is evaluated better than S2 due to
HCI(1) > HCI(2). It is worth noting that HCI is not an
introduced parameter but a metric to measure the clustering
quality. It can be combined with BFC simply for determining
an optimal clustering hierarchy kopt with a maximum HCI
automatically. Therefore, the whole clustering process is still
parameter-free.

3.4 Balanced Partitions

Based on the profiling results, we observe that the partitions
by clustering are typically irregular and imbalanced. This
makes computing nodes load-imbalanced, and thus we need
to devise a new partition algorithm to achieve data paral-
lelism. In our design, a balanced partition on p computing
nodes means that the number of samples on each node
is close to np = n/p. Based on the data organization of
clustering results, we propose a balanced partition algorithm
by utilizing a backtracking mechanism, which is composed
of MERGE and SPLIT operations.

MERGE is performed on the piecemeal clusters with
small sizes. Figure 5 (a) shows a case with 4 processes on the
clustering result S1. Since we have np = 12/3 = 4, the sizes
of cluster C3 and C4 are too small compared to np. Therefore,
we sort the S1 by cluster size, and merge the small clusters
into the same node for a total size close to np on it. It is worth
noting that the models are still trained independently on each
node, which means the objective of MERGE is to make up the
np instead of mixing models on different clusters. In Figure 5
(a), cluster C3 and C4 are merged into process 3 as group G3

and G4. The total sizes are 3, 5, and 4 respectively on process
1 to 3, which achieves a balanced partition for S1.

SPLIT is utilized to separate the large clusters of which
the size is much larger than np. Since the sample pointers
in same clusters are moved together in each iteration, we
achieve SPLIT operation by backtracking mechanism based
on the clustering array structure. A case with 5 processes
on S2 is illustrated in Figure 5 (b). In this case, we have
np = 12/5 = 2.4 while the original cluster C3 are larger than
np apparently. Thus we perform backtracking on the S2 by
the tracks of pointers. The backtracked S

′

2 contains 2 new

Algorithm 5 Parallel Regression
Require: n samples for training, k samples for testing, best-

clustered results A
1: p← rank of a process
2: Initialize best Mean Squared Error MSE∗ ←∞
3: Balanced Partitions on n samples in A for Ap

4: function REGRESSION
5: TRAINING(Ap)
6: TESTING(Mp)
7: Reduce: MSE=(

∑P
p=1 e

p)/k
8: if (p = 0)&&(MSE < MSE∗) then
9: MSE∗ = MSE

10: end if
11: end function
12: function TRAINING(Ap)
13: Cp ← Cluster Number in Ap on Rank p
14: for i = 0→ Cp do
15: Training Model Mp

i for Cluster i on Rank p
16: end for
17: end function
18: function TESTING(Mp)
19: Initialize local MSE ep ← 0
20: for i = 0→ k − 1 do
21: if FindNearCLuster(i) = C∗ then
22: Select best M∗ for prediction
23: Update ep

24: end if
25: end for
26: end function

split clusters, where the size of C
′

3 is still larger than np. Then
we perform another SPLIT to separate C

′

3 into G3 and G4

respectively. Therefore, the group G1 to G5 are dispatched to
nodes evenly, and they are trained as independent models. By
utilizing the backtracking mechanism, a principle is followed
that closer samples are always guaranteed to gather together
after the SPLIT operation, and spatial locality is also exploited
simultaneously.

3.5 Independent Prediction

Parallel regression methods normally construct p inde-
pendently models, where p is the number of processors
(hardware parallelism) [48], [51]. They often take p into
consideration from the beginning as an input parameter.

Two major disadvantages exist with this approach. First,
p is essentially irrelevant to the input data and may mismatch
the intrinsic structure of data samples. Our method employs
the Best Friend Graph hierarchically and efficiently con-
structs a series of cluster hierarchies that does not depend on
any predefined value. Second, existing methods may require
a data reorganization to improve the load-balance. However,
this procedure may lose the relationship information among
the data that is moved from one cluster to others and hurts
the compactness of the final models.

The parallel regression is summarized in Algorithm 5
formally. First, we perform a training phase in line 5. In our
work, each process contains at least one cluster after balanced
partition, which means corresponding models are generated
by training separately form line 12 to line 17. Then model

7

S1

LON PARLA SFCHI NYC WDC PEKHK SHA SG TKY

Process 3
G4G3G2G1

P = 3

size = 5size = 3

Process 2Process 1
P = 5

size = 4

BACKTRACK

SPILT

MERGE

LON PARPEKHK SHA SG TKYLA SF
G4

CHI NYC WDC

Process 1
G5

Process 2
G3G2G1

Process 5Process 3 Process 4

size = 2size = 3 size = 2size = 2size = 3

(a) (b)

S2
,

C1 C2 C3 C4 C1 C3

C1
, C2

, C3
, C4

,

CHI PEKHK LONLA SFNYC PARSHA SG TKYWDC S2 CHI PEKHK LONLA SFNYC PARSHA SG TKYWDC

CHI LA SFNYC WDC PEKHK LON PARSHA SG TKY

C2

Fig. 5. Balanced partitions to achieve load balancing on each process. Figure 5 (a) describes the MERGE for small tasks, while Figure 5 (b) shows
the SPLIT for large tasks based upon backtracking mechanism. Abbreviated forms are used for city names.

parallelism is utilized for making predictions independently
on each process from line 18 to line 26. For a given test
sample x∗, we only use the corresponding model M∗ to
perform a prediction if its closest cluster center is C∗ on
process p. As illustrated in line 23, instead of conducting
communication regularly, the errors are accumulated on each
node first. Reduce operation is only required at last in line
7 to make statistical analyses. Since an intact message is
cheaper than scattered messages in MPI communication, the
latency overhead is further reduced by this optimization.

4 IMPLEMENTATION

4.1 Parallelization
To reduce the computation, memory, and communication
overheads, we design an efficient parallel implementation
of our method. The parallelization of the first function
of Algorithm 4 is straightforward. The data samples are
evenly distributed to all processors and the calculation is
parallelized accordingly. The distribution of the example is
shown in Figure 6 where each process is dispatched with 3
samples for computing their nearest neighbors respectively.

The traversal of the best friend forest and the calculation
of compactness, i.e. the second function of Algorithm 4 seems
to be an inherently serial task. However, provided with
Lemmas in the previous section, we are able to identify
individual components (trees) with the edge information in
the best friend forest. With Lemma 3.2, we know that each
cycle identifies a tree, and with Lemma 3.4 a cycle is easy to
find by searching its two equal edges.

Algorithm 6 provides the parallel version of the second
function TRAVERSEMST in Algorithm 4. All the best friend
edges are gathered to all processors in line 1. Every processor
then finds all pairs of equal edges by sorting all |V | edges
or using a hash method from line 4 to line 12. The number
of trees in the best friend forest is the number of pairs of
equal edges. Each processor traverses a set of trees, and the
traversal of each tree starts with either of the two nodes on its
cycle in line 14. Overall, it only transfers short messages that
only contain two values: the pairs of nearest neighbors and
the corresponding shortest distances in our implementation.

4.2 Computation
The process of finding the nearest neighbor dominates
the overheads of the computation. For a Best Friend Graph
G(V,E) where the vertex set V consists of n data elements,
there is no need to compute a full n × n distance adjacent

Algorithm 6 Parallellization of TRAVERSEMST in Algorithm
4

1: Gather the whole Best Friend Forest
2: hash.initialize()
3: mstNum = 0
4: for i = 0→ n− 1 do
5: j = getBestFriend(i)
6: if hash.exist((i, j)) then
7: startNode[mstNum] = i
8: mstNum+ = 1
9: else

10: hash.add((i, j))
11: end if
12: end for
13: parfor i = 0→ mstNum− 1 do
14: SEARCH(startNode[i])
15: end parfor

matrix on a large-scale dataset in practice. For example,
the best friend can be obtained easily via fast approximate
nearest neighbor methods with O(log(n)) time complexity
(such as FLANN [35], k-d tree [19]).

Instead of using these ready-made fast library, we adopt
Euclidean distance for pairwise distance calculation in a more
general implementation. Since the number of data samples
decrease at least half at each recursion, we average them
and use the mean vectors for computing the best friend.
This also simplifies the computation and optimizes the time
complexity from O(n2) to O(nlog(n)), especially with the best
case O(n) by our constant-round convergence. To further
leverage the ability of vector processing units in modern
CPUs, we group vl data samples in a vector register and
perform vl calculations in a SIMD style, where vl is the
maximum number of double elements a register can hold.
This improves the computation efficiency significantly.

4.3 Data Organization

Provided with the load-balancing scheme described in
Section 3.4, we design a simple data organization method to
guarantee an efficient implementation.

After building the Best Friend Forest in each clustering
hierarchy, sample pointers divided to the same cluster are
swapped to stay together. Each sample actually represents
a cluster which is clustered by points in the last round. The
relative position of these points in a low-hierarchy cluster
are fixed, i.e. they are swapped as a whole big sample point.

8

1

CHI PEKHK LONLA SFNYC PAR SHA SG TKY WDC

CHI PEKHK LONLA SFNYC PARSHA SG TKYWDC

Best Friend Clustering

S

CHI PEKHK LONLA SFNYC PARSHA SG TKYWDCS2

Best Friend Clustering

Fig. 6. Data organization in Best Friend Clustering. Clusters are distin-
guished by colors and boxes in two steps respectively.

This data organization is critical to balanced partition since it
guarantees that the closer samples are in the array, the more
similarities match. Figure 6 depicts the process for pointer
swaps in each clustering hierarchy. Although London, Paris,
and Hong Kong are clustered into the same group in the
S2 hierarchy, London and Paris contain more similarities
as they are far away from Hong Kong in the clustering
array. Thus, the load-balancing scheme is implemented
simply based on a newly-designed data structure. The data
organization updates as the BFC steps forward, which only
requires negligibly simple pointer swaps without additional
operations.

5 EXPERIMENTS

5.1 Setup
Platforms. We develop the library in C++ and our experiments
are performed on a high-performance cluster. Each machine
of the cluster is composed of two Intel Xeon Platinum 9242
processors with 2.30 GHz clock speed (turbo boost frequency
of up to 3.80 GHz), which owns 96 physical cores organized
into two sockets. The processor contains a 71.5 MB smart
cache. AVX512 instruction set extension is supported and it’s
able to conduct operations for 8 double-precision floating-
point data in a SIMD manner.

Benchmarks. The experiments are conducted in two parts.
First, the proposed Best Friend Clustering is evaluated with
three classic 2D datasets. Results of K-Means [49], AHC [38]
and MSTC [29] methods are also presented as different
benchmarks for comparison. Then we turn to the evaluation
on convergence, accuracy, and scalability for our regression
library with five real large-scale datasets. Since DCKRR [52]
and BKRR2 [48] are two closely related papers, they are
employed as two benchmarks in this paper. Moreover, we
alternate the clustering methods in BKRR2 with AHC [38]
and MSTC [29] as AHCKRR and MSTKRR respectively.
Thus the experimental configurations for parallel regres-
sion cover the whole spectrum of representative clustering
methods: BFCKRR (Best Friend Clustering), BKRR2 (K-
Means), AHCKRR (Agglomerative Hierarchical Clustering),
and MSTKRR (Minimum Spanning Tree Clustering).

Datasets. Three classic shape datasets are employed to
demonstrate the quality of clustering in Table 5.1, which can
be obtained in the Clustering Basic Benchmark (CBB) [18].
They represent well-understood clustering problems and
are widely-used benchmarks for checking the applicability
of clustering algorithms [18], [20], [41], [50]. Then Datasets
Million Song Data (MSD) and Cadata are used as two of our
evaluated datasets for regression since they are both used
in the paper of DCKRR and BKRR2 [48]. To further justify

the scaling efficiency of our approach, we use another three
real datasets, which contain the data on higher dimensions
and interdisciplinary research. The details of these five
datasets are sorted by #Train and summarized in Table 2.
All these datasets are available in the UCI Machine Learning
Repository [15]. The distance measure is also adopted fairly
by using Euclidean distance.

TABLE 1
Description of Classic Shape Datasets.

DATASET #SAMPLES #LABELS #DIMENSIONS

ZAHN’S COMPOUND [50] 399 6 2
AGGREGATION [20] 788 7 2
R15 [41] 600 15 2

TABLE 2
Description of Large Real Datasets.

DATASET #TRAIN #TEST #DIMENSIONS FIELD

CADATA 18,432 2,208 8 HOUSING
PROTEINS 40,730 5,000 9 BIOMEDICINE
APS FAILURE 60,000 16,000 171 VEHICLE
MSD 463,715 51,630 90 MUSIC
GAS SENSOR 4,095,000 900,900 20 CHEMISTRY

5.2 Visualization
For better clarity, the quality of Best friend Clustering is
visualized intuitively in Figure 7 by utilizing the classic
shape datasets in Table 5.1. To evaluate the classification
performance quantitatively, the adjusted mutual information
(AMI) [42] is used in Figure 7 to measure the similarity
between partitions on ground truth data and the cluster
assignment obtained by the methods. Due to that the perfor-
mance of K-means is greatly influenced by the K value, we
set K with real #labels straightway. Nevertheless, K-means
yields poor results especially on Zahn’s Compound [50]
and it cannot separate the arbitrary shapes smoothly. AHC
and MST clustering outperform K-means in most cases.
Compared with three methods mentioned above, we can
observe that BFC maintains the merges quite well and
clusters these data better than the considered benchmarks.

5.3 Convergence
Since the connected samples generated by our clustering
method are grouped at least half recursively, BFC could reach
a fast convergence in O(logN) rounds. The details for HCIs
and #clusters are given in Table 3 and Table 4 respectively,
where the best convergent hierarchies are highlighted. The
average sizes for each cluster are 56, 4, 15,000, 453, and
2,379 respectively on five datasets. Moreover, the number of
iterations still falls in low single digits on large-scale datasets
like Gas Sensor, which illustrates that the clustering is less
sensitive to the increasing training size and appropriate for
scaling cases.

5.4 Accuracy
The proposed balanced partition strategy has little impact
on the accuracy of the model since it reserves the samples
with most similarities in the same cluster. Nonetheless, to
assure the correctness of our implementation, we perform the

9

K-Means:63% AHC:87%

MST:88% BFC:92%

K-Means:75% AHC:78%

MST:83% BFC:93%

K-Means:82% AHC:83%

MST:88% BFC:96%

Fig. 7. Visualization for considered methods on Zahn’s Compound [50] (left), Aggregation [20] (Center), and R15 [41] (right) with AMI score annotated.

TABLE 3
Hierarchical HCIs in Best Friend Clustering

STEPS 1 2 3 4 5 6 7

CADATA 0.31 0.51 0.26 0.45 0.24 0 -
PROTEINS 0.65 0.44 0.28 0.14 0.13 0.11 0
APS FAILURE 0.30 0.56 0.27 0.35 0.58 0.50 0
MSD 0.09 0.25 0.19 0.02 0 - -
GAS SENSOR 0.22 0.38 0.62 0.24 0.17 0.13 0

TABLE 4
#clusters for each hierarchy in Best Friend Clustering

STEPS 0 1 2 3 4 5 6 7

CADATA 18,432 4,737 326 64 8 2 1 -
PROTEINS 40,730 11,273 724 191 32 6 2 1
APS FAILURE 60,000 15,230 712 124 11 4 2 1
MSD 463,715 54,307 1,023 60 7 1 - -
GAS SENSOR 4,095,000 231,541 13,115 1,721 202 10 2 1

configurations scaling from 96 to 12,288 cores and compare
with the reported accuracy (measured by MSE). To give a fair
comparison, the best parameters were finely tuned from the
same parameter set to achieve the lowest MSE in different
methods. As shown in Figure 8, BFCKRR achieves the lowest
MSEs when KRR techniques are employed. Moreover, BFCLR
and BFCSVR could also make a superior prediction in most
cases. Among all considered baselines, DCKRR and BKRR2
produce a poor quality, which adopts no samples clustering
and K-means clustering respectively. As the core increases,
high accuracy is obtained steadily by our library while the
MSEs of other baselines ripples drastically. This illustrates
that our balanced partition algorithm adds great support to
accuracy in scaling cases.

5.5 Scalability
Figure 8 also illustrates the scalability for different methods
on five datasets. We observe that our library consistently
achieves high performance on them compared to baselines.
With a larger dataset like Gas Sensor, gaps between them
are further widened and it is even more than 13.6x faster
than BKRR2. Moreover, the time for our library decreases
regularly as we double the number of cores, while both
DCKRR and BKRR2 exhibit a bad scaling performance by
a growing curve. This illustrates that the K-means-based or
DC-based methods are poor in large-scale regression, where
performances are jeopardized cumulatively by the increasing
K value and expensive DC operations. With similar parallel
implementation achieved, MSTKRR outperforms BKRR2 in

most cases. However, AHCKRR suffers from the lowest
performance as agglomerative style algorithms come with a
quadratic time complexity inherently.

To dissect the procedures of our library and see how it
varies as the size of datasets grows, we provide a quantitative
look into the cases of two typical datasets, i.e., the smallest
and largest ones. Figure 9 compares the logarithmic time
for clustering I/O, clustering, regression I/O, regression,
and communication in our library. Here the I/O means all
cost of the non-computational parts except communication.
Upon inspection, it becomes distinct that the increasing cores
also aggravate the communication and I/O cost. Despite the
scaling pressure brought by communication and I/O, our
library still obtains a sustained scaling performance. Table 5
shows the analytical proportion and speedup of two datasets.
Interestingly, although the average proportion on different
datasets contains little difference, our library can obtain a
higher speedup on Gas Sensor. Based on conjoint analyses
on Figure 9, we can observe that the key contribution lies in
the better scaling efficiency of parallelizable procedures (clus-
tering and regression parts) on large-scale datasets.

5.6 Discussion
In this subsection, we provide a quick recap on previous
experiments to tease out the contributions from different
aspects of our proposed method.

We first investigate the classification performance on the
classic shape datasets compared to three typical baselines in
Section 5.2. Apparently, our method could achieve a better
classification intuitively. Then the convergence experiments
in Section 5.3 demonstrate that our method could achieve a
constant convergence stably even confronted with millions
of sample elements. Accuracy experiments in Section 5.4
conduct cases scaling to 12,288 cores on various benchmarks.
Since our balanced partition algorithm captures most sim-
ilarities among samples, a competitive result is obtained
on distributed systems. At last, the scalability experiments
demonstrate that our regression library leveraging BFC
outperforms the referenced benchmarks across a broad
variety of configurations in scaling cases.

6 RELATED WORK

Our paper shows closely concerns for two main lines of
research. The first thread is to study the efficient clustering
methods with better-quality on distributed systems. Bah-
mani et al. extended the k-means problems by a MapReduce

10

BFCKRR BFCLR BFCSVR BKRR2 DCKRR AHCKRR MSTKRR

Cadata Proteins

ProteinsCadata

APS Failure

APS Failure

MSD

MSD

Gas Sensor

Gas Sensor

A
ccuracy

S
calability

111

Fig. 8. Accuracy and scalability collected with the same configurations for different methods on real datasets. Our parallel library includes KRR,
LR, and SVR techniques. They are applied with BFC method and abbreviated to BFCKRR, BFCLR, and BFCSVR respectively. Benchmarks for
parallel regression applied with representative clustering methods are DCKRR (Divide-and-Conquer without clustering) [52], BKRR2 (K-Means) [48],
AHCKRR (Agglomerative Hierarchical Clustering) [38] and MSTKRR(Minimum Spanning Tree Clustering) [29].

TABLE 5
Analytical Proportion and speedup for different procedures by our library on Cadata and Gas Sensor datasets.

DATASET CADATA GAS SENSOR

COMPONENT C.I/O(%)1 C.(%) R.I/O(%) R.(%) M.(%) S.(C.+R.)2 S. C.I/O(%) C.(%) R.I/O(%) R.(%) M.(%) S.(C.+R.) S.

96 2.80 63.98 0.34 28.28 0.84 1.00 1.00 1.88 64.84 0.35 31.51 0.89 1.00 1.00
192 3.58 54.96 0.54 25.75 1.49 1.34 1.18 3.64 62.33 0.67 29.38 3.04 1.85 1.76
384 4.54 46.88 1.54 25.15 4.00 1.74 1.36 5.97 53.34 1.22 27.59 8.67 3.21 2.70
768 5.94 40.41 2.21 22.73 10.73 2.19 1.50 11.00 46.31 2.35 22.80 15.53 5.95 4.27
1536 7.94 31.62 3.39 21.60 25.45 3.18 1.83 14.00 37.21 3.09 21.45 21.79 8.68 5.28
3072 8.48 25.35 4.33 18.22 34.86 3.99 1.88 16.50 26.83 3.78 16.60 29.45 13.61 6.14
6144 10.09 27.21 5.18 14.04 43.01 4.66 2.09 20.27 18.84 4.52 15.54 37.01 21.09 7.53
12288 8.29 20.73 4.48 12.70 39.45 4.38 1.59 21.75 17.46 4.92 14.86 39.12 23.60 7.92

MEAN 6.46 38.89 2.75 21.06 19.98 2.81 1.55 11.88 40.90 2.61 22.47 19.44 9.87 4.57
1 FOR BETTER CLARITY, PROCEDURES FOR CLUSTERING, REGRESSION, AND COMMUNICATION ARE ABBREVIATED WITH C., R., AND M. RESPECTIVELY.
2 THE SPEEDUP IS ALSO ABBREVIATED TO S..

96 192 384 768
1536

3072
6144

12288

Cores

2.5

2.0

1.5

1.0

0.5

0.0

0.5

lo
g(

Ti
m

e)
 (s

)

Cadata

Clustering I/O
Clustering

Regression I/O
Regression

Communication

96 192 384 768
1536

3072
6144

12288

Cores

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Gas Sensor

Fig. 9. Time dissection on Cadata & Gas Sensor datasets.

algorithm on distributed nodes [5]. Ene et al. optimized
the greedy algorithm on MapReduce to solve the k-center
problems and the local search strategy to address the k-
median problems [16]. Subsequently, several papers stud-
ied similar problems with the MapReduce model [2], [6],
[8]. Then Bouguettaya et al. built a hierarchy based on a

group of centroids generated by K-Means to improve the
efficiency of AHC [10], while it only was implemented
for a single node.As for Graph Clustering, massive efforts
were also put into studying efficient algorithms [1], [3], [13],
[17]. Grygorash et al. presented the Hierarchical euclidean-
distance-based MST clustering algorithm (HEMST). Given
the number of clusters as an input, HEMST accelerate the
convergence progress by merging multiple edges, while the
edges larger than the threshold are required to be sorted
and removed in order [21]. Jin et al. split the clustering
problem into various overlapped subproblems by a Prim
algorithm, solved each subproblem, and then merged them
into an overall solution [26]. However, the MSTs are needed
to store at the Map side and then shuffle to the Reducers.
Bateni et al. [7] extended MST-based method called affinity
clustering with two classic MST algorithms.It still relied
heavily on MapReduce and requires moving all the edges
to one machine serially for MSTs after the edges deletion.
Moreover, affinity clustering did not reveal the exact running
times and number of machines used in their experiments [7].
Wang et al. utilized a divide-and-conquer scheme to construct
approximate MSTs, while the process to detect the long

11

edges of the MST is also highly sequential at an early stage
for clustering [44], [54]. As a result, an efficient clustering
algorithm competent for parallel computing on large-scale
data is in need crucially to improve the accuracy of K-means,
efficiency of AHC, and scalability of GC methods.

The second focus of this paper is closely related to
distributed regression, which suffers from serious scalability
problems in both computation time and memory usage [11].
Mini-batch Gradient Descent (MBGD) was used for training
on batched data [23], while it was proposed for serial
implementation. MapReduce-based methods [22], [47] made
computation distributed locally which holds parts of the
data. However, the overall cost in terms of computation and
network is high because of the busy synchronization sweeps.
The Divide-and-Conquer algorithm was then adopted on
distributed systems for SVM and KRR [24], [51], [52]. Parallel
SVM (PSVM) is presented recently to decrease memory and
time consumption [9], [34]. Zhang et al. proved that regres-
sion with kernel method is more accurate than non-kernel
methods, and DCKRR designed by them can outperform all
the previous approximate methods [51]. You et al. [49] pre-
sented K-Means kernel Ridge Regression (KKRR) for efficient
regression on clustered data. Recent work BKRR2 [48] was
optimized on KKRR by averaging the loads on each node
and had better accuracy than DCKRR and KKRR, which
was considered as a state-of-the-art approach for parallel
kernel regression. Thus, in this paper, the focus is paid to
the comparison with two closely related papers DCKRR and
BKRR2, which are also elaborated in the Introduction section.

7 CONCLUSION

In this paper, we propose a Best Friend Clustering method,
which is more accurate, fast, and meanwhile parameter-free.
Then we devise a strategy to determine the optimal aggrega-
tion through a well-defined metric on distributed systems.
Moreover, a balanced partition inspired by backtracking is
devised for load-balance in parallel implementation. At last,
we integrate proposed methods with regression techniques
as a parallel library, which shows superior performance on
convergence, accuracy, and scalability.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Founda-
tion of China under Grant No. 61972376, No. 62072431, No.
62032023; the Science Foundation of Beijing No. L182053.

REFERENCES

[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing
graph structure via linear measurements. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 459–467. SIAM, 2012.

[2] Prajesh P Anchalia, Anjan K Koundinya, and NK Srinath. Mapre-
duce design of k-means clustering algorithm. In 2013 International
Conference on Information Science and Applications (ICISA), 2013.

[3] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and
Grigory Yaroslavtsev. Parallel algorithms for geometric graph
problems. In Proceedings of the forty-sixth annual ACM symposium on
Theory of computing, pages 574–583, 2014.

[4] Tetsuo Asano, Binay Bhattacharya, Mark Keil, and Frances Yao.
Clustering algorithms based on minimum and maximum spanning
trees. In Proceedings of the fourth annual symposium on Computational
geometry, pages 252–257, 1988.

[5] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar,
and Sergei Vassilvitskii. Scalable k-means++. Proc. VLDB Endow.,
5(7):622–633, March 2012.

[6] Maria-Florina F Balcan, Steven Ehrlich, and Yingyu Liang. Dis-
tributed k-means and k-median clustering on general topologies.
Advances in Neural Information Processing Systems, 2013.

[7] Mohammad Hossein Bateni, Soheil Behnezhad, Mahsa Derakhshan,
Mohammad Taghi Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi,
and Vahab Mirrokni. Affinity clustering: Hierarchical clustering at
scale. In NIPS, pages 6867–6877, 2017.

[8] MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and
Vahab S Mirrokni. Distributed balanced clustering via mapping
coresets. In NIPS, pages 2591–2599, 2014.

[9] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling
up machine learning: Parallel and distributed approaches. Cambridge
University Press, 2011.

[10] Athman Bouguettaya, Qi Yu, Xumin Liu, Xiangmin Zhou, and
Andy Song. Efficient agglomerative hierarchical clustering. Expert
Systems with Applications, 42(5):2785–2797, 2015.

[11] CL Philip Chen and Chun-Yang Zhang. Data-intensive applications,
challenges, techniques and technologies: A survey on big data.
Information sciences, 275:314–347, 2014.

[12] Gongwei Chen, Xinhang Song, Haitao Zeng, and Shuqiang Jiang.
Scene recognition with prototype-agnostic scene layout. IEEE
Transactions on Image Processing, 29:5877–5888, 2020.

[13] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, Mohammad-
Taghi Hajiaghayi, Andrew McGregor, Morteza Monemizadeh, and
Sofya Vorotnikova. Kernelization via sampling with applications to
finding matchings and related problems in dynamic graph streams.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms, pages 1326–1344. SIAM, 2016.

[14] Norman R Draper and Harry Smith. Applied regression analysis,
volume 326. John Wiley & Sons, 1998.

[15] Dheeru Dua and Casey Graff. Uci machine learning repository.
[16] Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using

mapreduce. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2011.

[17] Hossein Esfandiari, Mohammadtaghi Hajiaghayi, Vahid Liaghat,
Morteza Monemizadeh, and Krzysztof Onak. Streaming algorithms
for estimating the matching size in planar graphs and beyond. ACM
Transactions on Algorithms (TALG), 14(4):1–23, 2018.

[18] Pasi Fränti and Sami Sieranoja. K-means properties on six clustering
benchmark datasets. Applied Intelligence, 48(12):4743–4759, 2018.

[19] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An
algorithm for finding best matches in logarithmic expected time.
ACM Transactions on Mathematical Software (TOMS), 1977.

[20] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clus-
tering aggregation. Acm transactions on knowledge discovery from data
(tkdd), 1(1):4–es, 2007.

[21] Oleksandr Grygorash, Yan Zhou, and Zach Jorgensen. Minimum
spanning tree based clustering algorithms. In 2006 18th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI’06),
pages 73–81. IEEE, 2006.

[22] Qing He, Tianfeng Shang, Fuzhen Zhuang, and Zhongzhi Shi. Par-
allel extreme learning machine for regression based on mapreduce.
Neurocomputing, 102:52–58, 2013.

[23] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural
networks for machine learning lecture 6a overview of mini-batch
gradient descent. Cited on, 14(8), 2012.

[24] Cho-Jui Hsieh, Si Si, and Inderjit Dhillon. A divide-and-conquer
solver for kernel support vector machines. In International conference
on machine learning, pages 566–574, 2014.

[25] Jie Hu, Yi Pan, Tianrui Li, and Yan Yang. Tw-co-mfc: Two-
level weighted collaborative fuzzy clustering based on maximum
entropy for multi-view data. Tsinghua Science and Technology,
26(2):185–198, 2020.

[26] Chen Jin, Md Mostofa Ali Patwary, Ankit Agrawal, William
Hendrix, Wei-keng Liao, and Alok Choudhary. Disc: A distributed
single-linkage hierarchical clustering algorithm using mapreduce.
work, 23:27.

[27] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education
India, 2006.

[28] Max Kuhn. Caret: classification and regression training. ascl, pages
ascl–1505, 2015.

[29] Jia Li, Xiaochun Wang, and Xiali Wang. A scaled-mst-based
clustering algorithm and application on image segmentation.
Journal of Intelligent Information Systems, pages 1–25, 2019.

12

[30] Jianjiang Li, Huihui Jiao, Jie Wang, Zhiguo Liu, and Jie Wu.
Online real-time trajectory analysis based on adaptive time interval
clustering algorithm. Big Data Mining and Analytics, 3(2):131–142,
2020.

[31] Kun Li, Honghui Shang, Yunquan Zhang, Shigang Li, Baodong
Wu, Dong Wang, Libo Zhang, Fang Li, Dexun Chen, and Zhiqiang
Wei. Openkmc: a kmc design for hundred-billion-atom simulation
using millions of cores on sunway taihulight. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–16, 2019.

[32] Kun Li, Liang Yuan, Yunquan Zhang, and Yue Yue. Reducing
redundancy in data organization and arithmetic calculation for
stencil computations. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC ’21, 2021.

[33] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. The global
k-means clustering algorithm. Pattern recognition, 36(2):451–461,
2003.

[34] Pabitra Mitra, CA Murthy, and Sankar K Pal. A probabilistic active
support vector learning algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(3):413–418, 2004.

[35] Marius Muja and David G Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. VISAPP (1),
2(331-340):2, 2009.

[36] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical
clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 2(1):86–97, 2012.

[37] Guo Pu, Lijuan Wang, Jun Shen, and Fang Dong. A hybrid
unsupervised clustering-based anomaly detection method. Tsinghua
Science and Technology, 26(2):146–153, 2020.

[38] T. Sun, C. Shu, F. Li, H. Yu, L. Ma, and Y. Fang. An efficient
hierarchical clustering method for large datasets with map-reduce.
In 2009 International Conference on Parallel and Distributed Computing,
Applications and Technologies, pages 494–499, 2009.

[39] Zhanquan Sun and Geoffrey Fox. Study on parallel svm based
on mapreduce. In Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications
(PDPTA), page 1. The Steering Committee of The World Congress
in Computer Science, Computer . . . , 2012.

[40] Yu Tian, Ruiqing Zheng, Zhenlan Liang, Suning Li, Fang-Xiang
Wu, and Min Li. A data-driven clustering recommendation method
for single-cell rna-sequencing data. Tsinghua Science and Technology,
26(5):772–789, 2021.

[41] Cor J. Veenman, Marcel J. T. Reinders, and Eric Backer. A maximum
variance cluster algorithm. IEEE Transactions on pattern analysis and
machine intelligence, 24(9):1273–1280, 2002.

[42] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information
theoretic measures for clusterings comparison: is a correction for
chance necessary? In Proceedings of the 26th annual international
conference on machine learning, pages 1073–1080, 2009.

[43] Ning Wang, Gege Guo, Baonan Wang, and Chao Wang. Traffic
clustering algorithm of urban data brain based on a hybrid-
augmented architecture of quantum annealing and brain-inspired
cognitive computing. Tsinghua Science and Technology, 25(6):813–825,
2020.

[44] Xiaochun Wang, Xiali Wang, and D Mitchell Wilkes. A divide-and-
conquer approach for minimum spanning tree-based clustering.
IEEE Transactions on Knowledge and Data Engineering, 21(7):945–958,
2009.

[45] Wikipedia. Global city. Website, 2020. https://en.wikipedia.org/
wiki/Global city#Global Cities Index.

[46] Zhonghao Xue and Hongzhi Wang. Effective density-based
clustering algorithms for incomplete data. Big Data Mining and
Analytics, 4(3):183–194, 2021.

[47] Hailong Yang, Zhongzhi Luan, Wenjun Li, and Depei Qian.
Mapreduce workload modeling with statistical approach. Journal
of grid computing, 10(2):279–310, 2012.

[48] Yang You. Fast and accurate machine learning on distributed
systems and supercomputers. 2020.

[49] Yang You, James Demmel, Cho-Jui Hsieh, and Richard Vuduc.
Accurate, fast and scalable kernel ridge regression on parallel
and distributed systems. In Proceedings of the 2018 International
Conference on Supercomputing, pages 307–317, 2018.

[50] Charles T Zahn. Graph-theoretical methods for detecting and
describing gestalt clusters. IEEE Transactions on computers, 100(1):68–
86, 1971.

[51] Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and
conquer kernel ridge regression. In Conference on learning theory,
pages 592–617, 2013.

[52] Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and
conquer kernel ridge regression: A distributed algorithm with
minimax optimal rates. The Journal of Machine Learning Research,
16(1):3299–3340, 2015.

[53] Xuan Zhao, Zhongdao Wang, Lei Gao, Yali Li, and Shengjin Wang.
Incremental face clustering with optimal summary learning via
graph convolutional network. Tsinghua Science and Technology,
26(4):536–547, 2021.

[54] Caiming Zhong, Mikko Malinen, Duoqian Miao, and Pasi Fränti.
A fast minimum spanning tree algorithm based on k-means.
Information Sciences, 295:1–17, 2015.

Kun Li received the B.E. degree in computer
science and technology from Shandong Univer-
sity in 2016. He is currently pursuing the Ph.D.
degree in computer science with the State Key
Laboratory of Computer Architecture, Institute
of Computing Technology, Chinese Academy of
Sciences. His research focuses on parallel and
distributed systems, high performance computing
and machine learning.

Liang Yuan (Member, IEEE) received the PhD
degree from the Institute of Software, Chinese
Academy of Sciences, Beijing, China, in 2013. He
is currently an associate professor with the State
Key Laboratory of Computer Architecture, Insti-
tute of Computing Technology, Chinese Academy
of Sciences. His research interests include large-
scale parallel computing and heterogeneous com-
puting.

Yunquan Zhang (Senior Member, IEEE) re-
ceived the Ph.D. degree in computer software
and theory from the Institute of Software, Chi-
nese Academy of Sciences, Beijing, China, in
2000. He is a Full Professor of computer sci-
ence with the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China.
His research interests include high-performance
parallel computing, with particular emphasis on
large scale parallel computation and program-
ming models, high-performance parallel numer-

ical algorithms, and performance modeling and evaluation for parallel
programs.

Gongwei Chen received the B.E. degree from
the School of Information Engineering, Univer-
sity of Science and Technology Beijing, Beijing,
China, in 2016. He is currently pursuing the Ph.D.
degree in computer science with the Key Labora-
tory of Intelligent Information Processing, Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing, China. His research interests
include computer vision, machine learning, and
image processing.

https://en.wikipedia.org/wiki/Global_city#Global_Cities_Index
https://en.wikipedia.org/wiki/Global_city#Global_Cities_Index

	Introduction
	Background
	Regression Techniques
	Linear regression
	Kernel Ridge regression
	Support Vector Regression

	Clustering Methods
	Agglomerative Hierarchical Clustering
	K-Means
	MST-based Clustering

	Method
	Best Friend Clustering
	Properties
	Optimal Aggregation
	Balanced Partitions
	Independent Prediction

	Implementation
	Parallelization
	Computation
	Data Organization

	Experiments
	Setup
	Visualization
	Convergence
	Accuracy
	Scalability
	Discussion

	Related Work
	Conclusion
	References
	Biographies
	Kun Li
	Liang Yuan
	Yunquan Zhang
	Gongwei Chen

