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ABSTRACT
Dynamical core is one of the most time-consuming parts in the

global atmospheric general circulation model, which is widely used

for the numerical simulation of the dynamic evolution process of

global atmosphere. Due to its complicated calculation procedures

and the non-uniformity of latitude-longitude mesh, the paralleliza-

tion suffers from high communication overhead. In this paper, we

deduce the operator form of the calculating flow in the dynamical

core. Furthermore, it is abstracted out that the stencil and collec-

tion alternate action is the basic operation in the dynamic core.

Based on the operator form of the calculation flow, we propose

the corresponding optimization strategy for each operator. In the

end, we develop a communication-avoiding algorithm to reduce

communication overhead in the dynamic core. Our experiments

show that the communication-avoiding algorithm reduces the total

runtime by 54% at most for a 50 km resolution model running 10

years. Especially for communication reduction, the new algorithm

achieves 1.4x speedup on average for the collective communication

and 3.9x speedup on average for the communication involved in

the stencil computation.
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1 INTRODUCTION
Numerical simulation of the global atmospheric circulation is impor-

tant in climate modeling, and is also a great challenge in scientific

computing. As it is essential for the atmospheric physics research

to understand dynamic behaviors of the global atmosphere circu-

lation at increasingly fine resolutions [10], high resolution global

atmospheric general circulation models have been developed in

recent years. In order to enable high-fidelity simulations of realistic

problems, the study of parallel optimization for atmospheric solvers

is becoming an urgent demand.

The dynamical core of global atmospheric general circulation

model (AGCM), as one of the most time-consuming parts of AGCM,

focuses on the dynamic evolution process of global atmospheric

circulation, which refers to the formulation of the hydrodynamic

equations of the atmosphere and the numerical algorithms to solve

https://doi.org/10.1145/3225058.3225140
https://doi.org/10.1145/3225058.3225140
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them. In recent years, a lot of progress has been made on dynam-

ical cores, including the formulation of equations, flexibilities of

grids [20], discretization methods [6, 26, 27], and parallel algorithms

[18, 27]. Although the finite volume and spectral element methods

have been developed and adopted into the dynamical core based on

unstructured grids [6] in this decade, the finite difference dynamical

core using latitude-longitude meshes is always widely used due to

it being able to preserve the energy conservation, which is impor-

tant for the climate modeling. Since the finite difference dynamical

core usually involves several kinds of complicated communications,

such as neighbor communication and collective communication

along different directions of the latitude-longitude mesh, the com-

munication overhead is large, and the communication time takes

up the main part of the runtime of the dynamical core [23, 27]. In

order to improve the performance of the finite difference dynamical

core, this work focuses on the communication optimization.

In resent decades, the communication-avoiding technique has

been developed based on the lower bound analysis. Using the tech-

nique for avoiding communication, most classical algorithms in

numerical computation have been optimal [3, 5]. In this paper,

we consider the application of the communication-avoiding tech-

nique for the global atmospheric circulation simulation, and design

a communication-avoiding algorithm for the dynamical core of

IAP-AGCM 4.0, which is developed by Institute of Atmospheric

Physics, Chinese Academy of Sciences [22, 27]. It includes two main

parts: the dynamic core and the physical parameterizations. The

dynamic core is the main computational part of the model. Our

numerical test in Figure 1 demonstrates that the communication

time dominates the runtime of the dynamical core indeed. Hence,

the communication optimization is important for the performance

improvement of the dynamical core. Following are the primary

contributions and novelties of the paper:

• This paper first deduces the operator form of the calculating

flow in the dynamical core of AGCM. Furthermore, it is ab-

stracted out that the stencil and collection alternate action

is the basic operation in the dynamic core, which is an im-

portant insight useful for the design of the communication-

avoiding algorithm.

• For several communication operations in the dynamical core,

the corresponding optimization strategies are proposed. Con-

sequently, a communication-avoiding algorithm is designed,

which significantly reduces the frequency of collective com-

munication and local communication, and maximizes the

potential overlap of the computation and communication in

the stencil of the dynamical core.

• The communication-avoiding algorithm is implemented in

the dynamical core of IAP-AGCM 4.0 which is a complicated

program for the simulation of realistic problems. The exper-

imental evaluation demonstrates significant performance

improvement on communication. For the 50 km resolution

model running 10 model years, the communication-avoiding

algorithm reduces the total runtime by 54% at most. Com-

pared the new algorithm with the original algorithm using

the best decomposition scheme, the new algorithm achieves

1.4x speedup on average for the collective communication
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Figure 1: The percentage of times for communication and
computation in the dynamical core, where the size of a
latitude-longitude mesh is nx ×ny ×nz = 720× 360× 30. Each
processor on distributed-memory clusters manages a MPI
process independently.

and 3.9x speedup on average for the communication involved

in the stencil computation.

2 RELATED PRIORWORK
2.1 Dynamic Evolution Equations
To facilitate numerical analysis and algorithmic design, the dynam-

ical core of IAP-AGCM 4.0 uses the following variable substitution

referred to a tensor transform,
U = Pu,
V = Pv,

Φ = PR(T − T̃ )/b,
p′sa = ps − p̃s ,

(1)

where u and v are two velocity vectors along latitude and longi-

tude directions on the surface of the sphere respectively; T is the

temperature; ps is the surface pressure; and b = 87.8 m s
−1

is the

characteristic velocity of gravity wave propagation in the stan-

dard atmosphere; R is the gas constant for dry air; P =
√
pes/p0,

pes = ps − pt , pt = 2.2 hPa is the pressure at the model top layer

and p0 = 1000 hPa; T̃ and p̃s are state variables which characterize

temperature and pressure respectively on the standard stratification.

After the subtraction of standard stratification, with the transform

(1) and the vertical coordinate σ = (p − pt )/pes , the dynamic evo-

lution equations (DEEs) can be written as

∂U
∂t = −

∑
3

m=1 Lm (U ) − P
(1)

λ − P
(2)

λ − f ∗V ,
∂V
∂t = −

∑
3

m=1 Lm (V ) − P
(1)

θ − P
(2)

θ − f ∗U ,
∂Φ
∂t = −

∑
3

m=1 Lm (Φ) + (1 − δp ) · [b(1 + δc )

+δκΦ/P] · (Ω(1) + Ω
(2)

θ + Ω
(2)

λ ),
∂
∂t (

p′sa
p0 ) = κ∗Dsa − D(P) − ∂PW

∂σ ,

(2)

where δ = pt /p, f
∗
is determined by f ∗ = 2Ω cosθ +u cotθ/a with

a as the earth radius, Ω is the angular velocity of the earth rotation.

Here, δ is 0 with the standard stratification approximation. If it is
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set to 1, the set of equations becomes the same as the primitive

equations that are commonly used. The L1 and L2 are two horizontal
advection terms and L3 is the vertical convection term, which are

defined by 
L1(F ) =

1

2a sin θ (2
∂Fu
∂λ − F ∂u

∂λ ),

L2(F ) =
1

2a sin θ (2
∂Fv sin θ

∂θ − F ∂v sin θ
∂θ ),

L3(F ) =
1

2
(2 ∂F Ûσ

∂σ − F ∂ Ûσ
∂σ ),

(3)

where Ûσ is the vertical velocity on σ level. The pressure gradient

terms are calculated according to the following formulas:
P
(1)

θ = P
∂ϕ′

a∂θ ,

P
(2)

θ =
bΦ(1−δp )

pes ·
∂pes
a∂θ ,

P
(1)

λ = P
∂ϕ′

a sin θ ∂λ ,

P
(2)

λ =
bΦ(1−δp )

pes ·
∂pes

a sin θ ∂λ .

(4)

The terms Ω(1)
, Ω

(2)

θ , Ω
(2)

λ , D(P) and Dsa are determined by
Ω(1) = W

σ − 1

P [D(P) +
∂PW
∂σ ],

Ω
(2)

θ =
V
pes ·

∂pes
a∂θ ,

Ω
(2)

λ =
U
pes ·

∂pes
a sin θ ∂λ ,

(5)

and {
D(P) = 1

a sin θ (
∂PU
∂λ +

∂PV sin θ
∂θ ),

Dsa = ∇ · (ρ̃saksa∇
p′sa
ρ̃sap0

),
(6)

where ρ̃sa = p̃s/RT̃s is the density of the standard atmosphere at

the surface, ksa = 0.1 is the dissipation coefficient.

2.2 Dynamical Core And Atmospheric
Circulation Simulation

Dynamical core is a key component in AGCM to solve DEEs. For dis-

cretizing the equation (2), the dynamical core uses a finite difference

scheme with a terrain-following σ coordinate [12]. A 3-dimensional

latitude-longitude mesh with Arakawa’s C grid staggering is used

in the horizontal discretization [1]. In the latitude-longitude mesh

[20], latitude, longitude and normal directions of the spherical sur-

face are denoted briefly as x , y and z directions, and numbers of

nodes along the three directions are nx , ny and nz respectively. Al-

though the latitude-longitude mesh may not maintain load-balance

due to the non-uniformity [13], it is able to achieve the conserva-

tion of the sum of kinetic energy, the available potential energy,

and the available surface potential energy under the transform (1),

which leads to high-fidelity simulations of realistic problems. How-

ever, with the development of high resolution global atmospheric

general circulation models, the grid lines of the latitude-longitude

mesh cluster at the pole, which creates a potentially severe Courant-

Friedrichs-Lewy (CFL) restriction on the time step. In the decade,

many techniques have been proposed to handle this pole problem,

such as Fourier filtering [27]. They can successfully deal with this

clustering but they result in the reduced parallel scalability [18].

Thus, there is a growing interest in highly scalable algorithms [26]

based on less structured or unstructured grids with more uniform

resolution [2, 24]. Although the finite volume and spectral element

methods are developed and adopted into the dynamical core based

on unstructured grids [6] in resent years, the finite difference dy-

namical core under latitude-longitude grids is still widely used since

it can preserve the energy conservation, which is important for

the climate modeling. In this paper, we propose an algorithm for

avoiding communication in the finite difference dynamical core.

In the dynamical core of AGCM, the global atmosphere is defined

on the earth, and exhibits a broad range of different spatial and

temporal scales. These characteristics of the atmosphere require the

stencil computation and the global computation involving collective

communications. To avoid collective communication along some

direction, 2-dimensional latitude-longitude domain decomposition

schemes for message passing are usually used in the implemen-

tation of AGCM [23, 27]. Although the 2-dimensional decomposi-

tion strategies impact the parallelism of atmospheric models, they

are always more efficient than 3-dimensional decomposition in

real-world applications. To accelerate stencil computation in at-

mospheric models, recent proposed approaches focus on better

utilizing the heterogeneous processors [7], such as GPU [9, 15, 26]

and Intel MIC [25]. However, reducing the pure communication

overhead is still a challenging problem. In order to develop scal-

able algorithms for the atmospheric circulation simulation, related

work choose some standard atmosphere models with simple forms

as the test bed, such as shallow-water equations [26], which ex-

hibit most of the essential characteristics of the atmosphere but

are much simpler than DEEs for the simulation of real problems.

In order to optimize the finite difference dynamical core for solv-

ing DEEs, our research focuses on reducing the data movement

between processors on distributed-memory clusters.

3 ORIGINAL ALGORITHM
As the dynamical core of AGCM is developed on the distributed-

memory context, we assume that there are p processors, while px ,
py and pz processors (p = px ×py ×pz ) are distributed respectively
along x , y and z directions of the latitude-longitude mesh T with

nx × ny × nz points. In the distributed computing platform, all pro-

cessors are at equal status, and we do not distinguish the processors

within a computation node and the processors across nodes.

In the dynamical core, the finite difference discretization of DEEs

is as follows

[
∂ξ

∂t
]i, j,k = [Ã(ξ )]i, j,k + [L̃(ξ )]i, j,k , (7)

where the functions Ã and L̃ are defined as

[Ã(ξ )]i, j,k =

©­­­­­­­«

(−P
(1)

λ − P
(2)

λ − f ∗V )i− 1

2
, j,k

(−P
(1)

θ − P
(2)

θ − f ∗U )i, j+ 1

2
,k

((1 − δp )[b(1 + δc ) + δκΦ/P]

·(Ω(1) + Ω
(2)

θ + Ω
(2)

λ ))i, j,k
p0κ

∗(Dsa )i, j − p0
∑nz
k=1 ∆σk · D(P)i, j,k

ª®®®®®®®¬
,

and

[L̃(ξ )]i, j,k =

©­­­­«
−
∑
3

m=1 Lm (U )i− 1

2
, j,k

−
∑
3

m=1 Lm (V )i, j+ 1

2
,k

−
∑
3

m=1 Lm (Φ)i, j,k
0

ª®®®®¬
.

Denote D as the set of all elements of ξ = (U ,V ,Φ,p′sa ). The func-

tions Ã and L̃ are defined onD. Both Ã and L̃ involve with stencil

computations, while Ã has to need a collective communication

along z direction due to the summation in the fourth element of Ã.
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The functions Ã and L̃ are corresponding to the adaptation and

advection processes in the atmospheric circulation respectively.

Algorithm 1 Original algorithm

Require: ξ (0);
1: //Dynamical evolution process of AGCMwith the number of time-step

from k = 1 to K ;

2: for k = 1 to K do
3: ψ 0 = ξ (k−1)

4: // Adaptation process needs M nonlinear iterations, and each itera-

tion is composed of 3 internal updates;

5: for i = 1 to M do
6: η1 = ψ i−1 + ∆t1 · F̃ Ã(ψ i−1);

7: η2 = ψ i−1 + ∆t1 · F̃ Ã(η1);

8: η3 = ψ i−1 + ∆t1 · F̃ Ã(
ψ i−1+η2

2
);

9: ψ i = η3;
10: end for
11: // Advection process requires only 1 nonlinear iteration;

12: ζ1 = ψM + ∆t2 · F̃(L̃(ψM ));

13: ζ2 = ψM + ∆t2 · F̃(L̃(ζ1));

14: ζ3 = ψM + ∆t2 · F̃(L̃(
ψM+ζ2

2
));

15: // Smoothing;

16: ξ (k ) = S̃(ζ3);
17: end for
18: return ξ (K )

;

The dynamical core integrates the equation (7) using Algorithm

1 which is a nonlinear time integration method [27]. In Algorithm 1,

S̃ represents a smoothing function for numerical stability, and the

function F̃ is associated with Fourier filtering to deal with the pole

problem [21]. Fourier filtering explores 1-dimensional fast Fourier

transform (FFT) as a tool for filtering high-frequency waves. Since

Fourier filtering is executed at each latitude circle, the collective

communication in FFT is along x direction.

As seen from Algorithm 1, different time integration methods

are chosen for the adaptation and advection processes respectively

at each time step of the numerical simulation in the dynamical core,

due to the different physical characteristics of two processes. The

adaptation process is a high frequency change in the atmospheric

circulation, while the advection process is related to the large-scale

and relative-stable activities of atmosphere on the earth. Hence, the

nonlinear iteration for the adaptation process has to be executed for

M times with ∆t1 ≪ ∆t2, and each nonlinear iteration is composed

of 3 internal updates. However, only one nonlinear iteration is

required by the advection process.

4 COMMUNICATION AVOIDING FOR
DYNAMICAL CORE OF AGCM

In this section, we consider the communication optimization for

the dynamical core of AGCM. First of all, we deduce the operator

form of the calculating flow in the dynamical core, in which each

operator involves only one kind of communication. Next, the cor-

responding optimization strategy is proposed for each operator.

Finally, a communication-avoiding algorithm is designed.

4.1 Operator Form of Calculating Flow
Since the function Ã contains stencil computations and a summa-

tion operation along z direction, both the local communication and

collective communication along z direction occur in Ã. In order to

facilitate the algorithm design for improving two different kinds of

communications in Ã, we write Ã as a summation of two functions

Ã = Ĉ + Â where

[Ĉ(ξ )]i, j,k =
©­­­«

0

0

0

−p0
∑nz
k=1 ∆σk · D(P)i, j,k

ª®®®¬ , Â = Ã − Ĉ.

It is obvious that Â corresponds to stencil computations, and Ĉ is

a summation function along z direction. By this way, two different

kinds of communications in Ã are split successfully. In conclusion,

Algorithm 1 mainly involves five functions in which Â, L̃ and

S̃ associates with stencil computations, Ĉ requires a collective

communication along z direction, and F̃ is Fourier filtering needing

a collective communication along x direction.

For a tensor ξ ∈ D on a 3-dimensional nx × ny × nz mesh T
with independent directions x , y and z, we define the update of
a mesh point vi1,i2,i3 ∈ T as updating ξ |vi

1
,i
2
,i
3

which represents

the data of ξ on the point vi1,i2,i3 . For example, in the (2m + 1)3-
point stencil computation (m ≥ 1), the update of each vi1,i2,i3 ∈ T
involves all vj1, j2, j3 such that |jk − ik | ≤ m (k = 1, 2, 3). If the

update of eachvi1,i2,i3 ∈ T involves all points along some direction,

such as 1-dimensional FFT along x direction in which the update of

vi1,i2,i3 ∈ T needs all vj1,i2,i3 ∈ T (1 ≤ j1 ≤ nx ), we call this kind
of update way as a collective computation.

Let n = nx × ny × nz . An operator is defined as a map from Dn

toDn
. DenoteA as the operator corresponding to Â. Forw = Av

with w and v in Dn
, the operator A updating the k-th element

of v corresponds to the update of vi1,i2,i3 using the function Â,

where k = i1 + (i2 − 1)nx + (i3 − 1)nxny . Similarly, we can define

operators C, L, F and S of Ĉ, L̃, F̃ and S̃ respectively. Since the

addition and scalar-multiplication operations for updating each

mesh point vi1,i2,i3 are independent with other points, the addition

and scalar-multiplication in Algorithm 1 can be ignored. Hence, the

K iterations of the dynamical core can be written as the following

operator form

ξ (K ) = [S(FL)3(F CA)3M ]K ξ (0), (8)

where each operator only involves one kind of communication.

Based on (8), we can obtain the operator form of the calculating

flow (Figure 2), which clearly shows that each iterative step per-

forms a stencil computation and a collective computation alterna-

tively. Therefore, the stencil-collective alternate action is the basic

operation in the dynamic core.

4.2 Optimization for Collective Computation
Fourier filtering operator F and the summation operator C involve

with collective communication along x and z directions respectively.
In order to avoid one of these two collective communications, it is

natural to set pz = 1 or px = 1, which yields two different strate-

gies: X-Y decomposition and Y-Z decomposition strategies [27].

Although the 2-dimensional decomposition schemes impact the
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Figure 2: The operator form of the calculating flow.

parallelism of atmospheric models, they are wildly used, and more

efficient than 3-dimensional decomposition. In the following, we

use the data movement lower bounds to reason about domain de-

composition schemes, and select an optimal choice for minimizing

the communication cost.

Firstly, in the related work for computing the discrete Fourier

transform ofm values based on the directed acyclic graph (DAG)

ofm-input FFT, when no processor computes more than a constant

fraction of the total number of vertices of the DAG, the number of

words of dataW moved by each processor (communication cost) is

Ω(m logm/(p log(m/p))) [4, 14]. This bound does not assume any

particular I/O protocol, and only requires that every input resides in

the local memory of exactly one processor before the computation

begins. For Fourier filtering F , both the FFT and inverse one would

be executed once respectively. As the inverse FFT is the same as

FFT in the computation flow, except for using different coefficients

for multiplication, the communication lower bound for nx -input
Fourier filtering F can be obtained by a simple application of the

result for the bound of FFT.

Theorem 4.1. Any algorithm computes the nx -input Fourier fil-
tering F with px processors, where 1 ≤ px ≤ nx . If each processor
computes at most ε(nx lognx ) vertices in the DAG of FFT (the same
for the inverse FFT) with an arbitrary constant ε ∈ (0, 1), then the
communication cost of any algorithm is

W = Ω(
2nx lognx

px log(nx /px )
· ηx ), (9)

where

ηx =

{
0, if px = 1,

1, if px ≥ 2.
(10)

Secondly, according to the analysis on collective communication

operations in [19], we can deduce the data movement lower bound

of the summation operation C, which can be attained by Ring

algorithms [19]. Hence, the following result is valid.

Theorem 4.2. Any parallel execution of the operator C, requires
the communication cost,

W = Ω(2(pz − 1)nxny ). (11)

Thirdly, in the practical application,nx ,ny are always larger than

nz , and px ≤ nx /2, py ≤ ny/2, pz ≤ nz/2, Hence,
nxnynz lognx
px log(nx /px )

≫

Figure 3: A latitude-longitude grid (left), and the domain de-
composition scheme (right) formesh pointswhere all points
on a latitude circle are distributed to the same processor.

(pz − 1)nxny . Furthermore, Theorem 4.1 and Theorem 4.2 indicate

that the communication cost of Fourier filtering is the high order

term in the communication lower bound of the dynamical core.

Since the increase of communication cost in the dynamical core is

determined by the change of the high order term in the lower bound,

an important optimization principle is avoiding communication of

the operation corresponding to the high order term in the lower

bound as much as possible. Hence, it is necessary to minimize the

data movement in Fourier filtering at first.

In conclusion, Y-Z decomposition strategy is a better choice

for the collective computation in the dynamical core. However,

it should be noted that, X-Y decomposition is more suitable for

the stencil computation, because the communication volume of

the stencil on Y-Z decomposition is lager than that based on X-Y

decomposition (see Section 5.2).

4.2.1 Domain decomposition scheme for F . From the equations

(9) and (11), it is obvious that, if we set ηx = 0, the high order term

would be canceled. Based on this observation, it is reasonable to use

only one processor to deal with all computation/processing tasks on

x direction in the dynamical core, which leads to px = 1 and ηx = 0.

It means that both 1-dimensional FFT and the inverse one along

each latitude circle are executed by one processor. Consequently,

there is no data movement in Fourier filtering. By this way, we avoid

communication in Fourier filtering. Therefore, this work chooses

the Y-Z decomposition (px = 1) as the optimization scheme for F

(Figure 3).

4.2.2 Approximate nonlinear iteration for C. Since the existing
implementation for collective communication has been optimal on

the communication cost [19], this work focuses on reducing the

frequency of the operator C in the dynamic core. In the adaptation

process, one nonlinear iteration can be approximately expanded as

ψ i ≈ ψ i−1 + α∆t1F̃ (Ĉ + Â)(ψ i−1)

+β(∆t1)
2F̃ (Ĉ + Â)F̃ (Ĉ + Â)(ψ i−1) (12)

+γ (∆t1)
3F̃ (Ĉ + Â)F̃ (Ĉ + Â)F̃ (Ĉ + Â)(ψ i−1).

On the right-hand side of the expansion (12), the second through

fourth terms are three corrections forψ i−1
, and constitute a power

series on ∆t1. According to the strong stability analysis of high-

order time integration methods [8], the fourth term is the highest
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order correction term, which can be computed inexactly by approx-

imation methods. Since Ĉ(ψ i−1) is associated with the summation

of pressures along z direction, and the change of pressures is rela-

tively slow, Ĉ(ψ i−2) is a good approximation of Ĉ(ψ i−1) at a small

time step. Hence, in the highest order minim term of (12), we can

use Ĉ(ψ i−2) to replace Ĉ(ψ i−1) for reducing the number of the

execution of C. Accordingly, we propose an approximate nonlinear

iteration approach for the adaptation process as:

ψ i ≈ ψ i−1 + α∆t1F̃ (Ĉ + Â)(ψ i−1)

+β(∆t1)
2F̃ (Ĉ + Â)F̃ (Ĉ + Â)(ψ i−1) (13)

+γ (∆t1)
3F̃ (Ĉ + Â)F̃ (Ĉ + Â)F̃ (Ĉ(ψ i−2) + Â(ψ i−1)),

where 1 ≤ i ≤ M and ψ 0 = ξ (k−1),ψ−1 = ξ (k−2). In this iterative

approach, C is executed only twice in each nonlinear iteration

of the adaptation process. Compared with the original method,

M summation operations can be avoided successfully in the new

approach, and one third of communication costs are reduced.

4.3 Optimization for Stencil Computation

Table 1: Stencil Computation in Adaptation Process

Term x direction y direction z direction

P
(1)

λ i , i ± 1, i − 2 j k , k + 1

P
(2)

λ i , i ± 1, i − 2 j k

f ∗V i , i − 1 j, j − 1 k

P
(1)

θ i j, j + 1 k , k + 1

P
(2)

θ i j, j + 1 k

f ∗U i , i + 1 j, j + 1 k
Ω1 i j k , k + 1
Ω2

θ i j, j ± 1 k

Ω2

λ i , i ± 1 i − 2, i ± 3 j k

D(P) i , i − 1 i + 2, i ± 3 j, j − 1 k
Dsa i , i ± 1 j, j ± 1 k

Table 2: Stencil Computation in Advection Process

Term x direction y direction z direction

L1(U ) i , i ± 1, i ± 2, i ± 3 j k , k + 1
L2(U ) i , i − 1 j j ± 1, k
L3(U ) i , i − 1 j k , k ± 1

L1(V ) i , i ± 1, i + 2, i ± 3 j, j + 1 k
L2(V ) i j, j ± 1 k
L3(V ) i j, j + 1 k , k ± 1

L1(Φ) i , i ± 1, i + 2, i ± 3 j k
L2(Φ) i j, j ± 1 k
L3(Φ) i j k , k ± 1

4.3.1 Halo areas and partition computing forA andL. From the

definitions of Â and L̃, the functions Â and L̃ consist of several

terms which involve with the stencil computations in the advec-

tion and advection processes. Tables 1 and 2 respectively present

how the updates of a point vi, j,k in stencils of the advection and

advection processes depend on its neighboring mesh points. Under

the Y-Z decomposition scheme for the latitude-longitude mesh, we
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Figure 4: The computational block owned by each processor
and eight halo areas for 3M stencil updates.

only need to consider the behaviors of A and L along y and z
directions to optimize the stencil computations in the adaptation

and advection processes.

For the adaptation process, based on the idea of avoiding com-

munication in sparse matrix-vector multiplication [3, 5], eight halo

areas are allocated around the computational block (black box in

Figure 4) of each processor to store the data from its neighbors

for 3M stencil updates (Figure 4). Because some updates on points

near boundaries are computed by both processors, this approach

performs some redundant work. But, the communication occurs

only once for 3M stencil updates.

In order to overlap some parts of the computation time and com-

munication time, we separate the computation block into an inner

part (green box in Figure 4) where the execution of A does not

require the information from halo areas, and an outer part that is

the remaining part of the block. At the beginning of the adaptation

process, each processor communicates once with eight neighbors

to send all the components of ξ needed by the neighboring pro-

cessors for 3M-times stencil computation. Simultaneously, each

processor computes the stencil update of inner part. As long as all

messages from eight neighbors arrive at the halo areas, the stencil

computations on the outer part and halo areas are executed.

Similar to the adaptation process, we can use the same approach

to improve the communication of L.

4.3.2 Operator splitting for S. For any ξ = (U ,V ,Φ,p′sa ), S̃ is

defined as S̃(ξ ) = (P1(U ), P1(V ), P2(Φ), P2(p
′
sa )), where

P1(φ) = φ − β
1

2
4
δ4λφ,

and

P2(φ) = φ − β
1

2
4
[δ4λφ + δ

4

θφ] +
1

2
8
β2δ4θδ

4

λφ,∀φ ∈ {U ,V ,Φ,p′sa }.

The three smoothing operations δ4λφ, δ
4

θφ and δ4θδ
4

λφ depend lin-

early on φi′, j′,k (i ′ = i, i ± 1, i ± 2, j ′ = j, j ± 1, j ± 2). From Table 3,

it is obvious that the stencil computation in the smoothing is just

associated with x and y directions.
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Table 3: Stencil Computation in Smoothing

Term x direction y direction z direction

P1 i , i ± 1, i ± 2 j k
P2 i , i ± 1, i ± 2 j, j ± 1, j ± 2 k

Since the smoothing S only involves the stencil along x and y
directions, the communication along the y direction only needs

to be considered for S under Y-Z decomposition scheme. As each

element in S̃(ξ ) is a line combination of some components of ξ , we

can rewrite S̃(ξ ) as follows

S̃(ξ ) = S̃j−2(ξ ) + S̃j−1(ξ ) + S̃j (ξ ) + S̃j+1(ξ ) + S̃j+2(ξ ), (14)

where S̃l (ξ ) corresponds to the contribution of all ξ |vi′,l,k (i ′ = i, i±
1, i ± 2) for the update of ξ |vi, j,k , and l = j, j ± 1, j ± 2. Furthermore,

we set S̃L = S̃j + S̃j−1 + S̃j−2, S̃
′
L = S̃j+1 + S̃j+2, and S̃R =

S̃j + S̃j+1 + S̃j+2, S̃
′
R = S̃j−1 + S̃j−2. Based on the important

observation (14), we split S into two operators which correspond to

two different stages: former smoothing and later smoothing. Former

smoothing happens before each processor sends information to

halo areas of neighbors for the next adaptation process, and later

smoothing is executed after halo areas receives all messages. By

this way, we can fuse two communications for the adaptation and

smoothing processes together. Figure 5 shows that a processor

executes both former smoothing and later smoothing with its left

neighbor.

During the first stage, the former smoothing is executed in the

computational block of each processor (black box in Figure 4). At

the beginning of former smoothing, ξ |vi, j,k with vi, j,k in D2 and

D3 (Figure 4) are copied for later smoothing. In Figure 5, the green

and yellow bars highlight the data copied by a processor and its left

neighbor respectively. Next, the full smoothing process S̃(ξ ) is able
to be executed onD1 (Figure 4), because the stencil of smoothing on

each mesh point only needs at most two points on its left or right

side along y direction (Table 3). Meanwhile, S̃R (ξ ) and S̃L(ξ ) are
done onD2 andD3 respectively. For this process, the corresponding

function can be represented as

S̃1(ξ |vi, j,k ) =


S̃(ξ |vi, j,k ), vi, j,k ∈ D1,

S̃R (ξ |vi, j,k ), vi, j,k ∈ D2,

S̃L(ξ |vi, j,k ), vi, j,k ∈ D3.

After the former smoothing is finished, the message transfer for

smoothing occurs, which can be combined with the communica-

tion for the next adaptation process. For example, in Figure 5, a

processor gains all messages from the left neighbor through one

communication. The received messages contain the yellow bar for

later smoothing, and the data for the next adaptation process which

are some elements of ξ ′ = S̃1(ξ ) on the left neighbor’s 3M right

layers of computational block. The data for the next adaptation

process would be stored in the left halo of the processor.

At the second stage, the later smoothing updates the mesh points

on D2,D3, · · · ,D7, while it is not needed on the solid points of

the block and eight halos (Figure 4). Using S̃′
L and S̃′

R , the later

Z

Y

Copy

Former 

smoothing Send

Send

Former 

smoothing

Copy
Later 

smoothing

Later smoothing

Achieve

2 layers 2 layers3M layers Left halo 2 layers
Left neighbor Each processor

Figure 5: Former smoothing and later smoothing. Before the
smoothing starts, the mesh points are drawn as empty dots.
The blue solid dots represent the mesh points which still
need later smoothing, while former smoothing on them has
been executed. The red solid dots show the areas where the
smoothing is finished.

smoothing S̃2 can be defined as

S̃2(S̃1(ξ |vi, j,k )) =


ξ ′ |vi, j,k , vi, j,k ∈ D1,

ξ ′ |vi, j,k + S̃
′
R (ξ |vi, j,k ),vi, j,k ∈ D2,D4,D7,

ξ ′ |vi, j,k + S̃
′
L(ξ |vi, j,k ),vi, j,k ∈ D3,D5,D6,

where ξ ′ = S̃1(ξ ). From (14), we have S̃ = S̃2 · S̃1. It means that

former smoothing and later smoothing accomplish the mission of

smoothing (Figure 5), while only one communication is just needed

for data preparation for both the smoothing operation and the next

adaptation process.

4.4 Communication-Avoiding Algorithm
Together with the optimized communication schedules proposed

above, Algorithm 2 shows the details of a new algorithm for the

dynamical core, which is based on the Y-Z decomposition scheme.

Since the Y-Z decomposition scheme is chosen in the new algorithm,

F̃ involves no communication (Section 4.2.1). In each iterative

step, an approximate nonlinear iteration is proposed to reduce the

frequency of using the summation operation Ĉ (Section 4.2.2). By

using Ĉ(ψ i−2) to replace Ĉ(ψ i−1) in the highest order correction

term, 2 collective communications along z direction are only needed
in each nonlinear iteration, and one third of communication costs

are reduced successfully.

For the optimization of stencil computations in the dynamical

core, halo areas and partition computation strategy are designed

to reduce the times of local communication and maximize the po-

tential overlap of computation and communication (Section 4.3.1).

Furthermore, an operator splitting technique is developed for fusing

the communications in the adaptation process and the smoothing

(Section 4.3.2). Therefore, two communications are only required

for stencil updating, which are overlapped with computation.
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Algorithm 2 A communication-avoiding algorithm

Require: ξ (0);
1: ξ (−1) = ξ (0);
2: for k = 1 to K do
3: ψ −1 = ξ (k−2), ψ 0 = ξ (k−1);
4: if k ≥ 2 then
5: ψ 0 = S1(ψ 0) in D1, D2, D3; // former smoothing

6: end if
7: send data for the smoothing operation and 3M stencil computations

in the adaptation process;

8: η1 = ψ 0 + ∆t1 · F̃(Ĉ(ψ −1) + Â(ψ 0)) in inner part of the block;

9: receive all messages from eight neighbors;

10: if k ≥ 2 then
11: ψ 0 = S2(ψ 0) in D2, D3, · · · , D7; // later smoothing

12: end if
13: η1 = ψ 0 + ∆t1 · F̃(Ĉ(ψ −1) + Â(ψ 0)) in outer part of the block and

halo areas;

14: η2 = ψ 0 + ∆t1 · F̃(Ĉ(η1) + Â(η1)) in the block and halo areas;

15: η3 = ψ 0 + ∆t1 · F̃(Ĉ(
ψ 0+η2

2
) + Â(

ψ 0+η2
2

)) in the block and halo

areas;

16: ψ 1 = η3;
17: for i = 2 to M do
18: η1 = ψ i−1 + ∆t1 · F̃(Ĉ(ψ i−2) + Â(ψ i−1)) in the block and halo

areas;

19: η2 = ψ i−1 +∆t1 · F̃(Ĉ(η1)+ Â(η1)) in the block and halo areas;

20: η3 = ψ i−1 +∆t1 · F̃(Ĉ(
ψ i−1+η2

2
)+ Â(

ψ i−1+η2
2

)) in the block and

halo areas;

21: ψ i = η3;
22: end for
23: send data for 3 stencil computations in the advection process;

24: ζ1 = ψM + ∆t2 · F̃(L̃(ψM )) in inner part of the block;

25: receive all messages from eight neighbors;

26: ζ1 = ψM +∆t2 · F̃(L̃(ψM )) in outer part of the block and halo areas;

27: ζ2 = ψM + ∆t2 · F̃(L̃(ζ1)) in the block and halo areas;

28: ζ3 = ψM + ∆t2 · F̃(L̃(
ψM+ζ2

2
)) in the block and halo areas;

29: end for
30: ξ (K ) = S̃ξ (K )

;

31: return ξ (K )
;

5 EVALUATION
In this section, we compare the performance of the new algorithm

with two original algorithms in the dynamical core of AGCM, and

present numerical results on Tianhe-2 supercomputer [25].

5.1 Platform and Benchmark
Tianhe-2 was the world’s fastest supercomputer from 2013 to 2015.

Each node of Tianhe-2 is equipped with two Intel Ivy Bridge CPUs

(24 cores). The interface nodes are connected using an InfiniBand

network. The system software includes a 64-bit Kylin OS, an Intel

14.0 compiler, a customized MPICH-3.1 for TH Express-2, and a

self-designed hybrid hierarchy file system H2FS.

To evaluate our optimized algorithm for dynamical core, we con-

duct idealized dry-model experiments proposed by Held and Suarez

[11], referred to as H-S. H-S test is a widely used benchmark calcu-

lation for evaluating the dynamical cores of AGCM independently

1412.6 

802.3 

580.2 

426.6 

218.4 

688.0 

505.7 

347.8 

234.9 

126.1 

474.4 

348.6 

243.9 

149.4 
97.2 

236.1 

118.0 

57.7 

31.5 

15.7 

133.5 

66.7 

32.6 

16.3 
8.9 

90.5 

45.2 

22.1 
11.1 6.0 

-150.0

-100.0

-50.0

0.0

50.0

100.0

150.0

200.0

250.0

0.0

500.0

1000.0

1500.0

2000.0

2500.0

64 128 256 512 1024

C
o

m
m

u
n

ica
tio

n
 V

o
lu

m
e

 ( M
B

)

T
im

e
 (

In
 1

0
0

0
 S

e
co

n
d

s)

Number of Processors

Original algorithm using X-Y decomposition

Original algorithm using Y-Z decomposition

Communication-avoiding algorithm

Figure 6: Time for Collective Communication.
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Figure 7: Communication Time of Stencil.

of the physical parameterizations. In the 3-dimensional latitude-

longitude mesh, nx × ny × nz = 720 × 360 × 30 corresponding to

the 50 km resolution, which is the highest resolution version we

can obtain. In this version, the number of processes used under Y-Z

decomposition is 1024 at most. Hence, we use the 1024 CPU cores

(rather than KNC co-processors) of Tianhe-2 in our numerical test,

where each processor is responsible for managing a MPI process

independently. We set the number of nonlinear iterations in each

step asM = 3, and execute the atmospheric simulation for 10 model

years.

5.2 Experimental Results
From Figure 6, it is obvious that the communication time for F in

X-Y decomposition is much longer than that for C in Y-Z decom-

position due to nx ≫ nz , which is consistent with our analysis in

Section 4.2.1. In addition, compared with the original algorithm

using Y-Z decomposition, the communication-avoiding algorithm

achieves on average 1.4x speedup for the collective communication,

and about 30% of the communication volumes are reduced, because
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one third of summation operations along z direction are eliminated

by using an approximate nonlinear iteration (Section 4.2.2).

From Algorithm 1, it is easy to deduce the approximate esti-

mates for the communication costs of stencil computations in the

original algorithms based on X-Y and Y-Z decomposition schemes

respectively, W stencil
XY = Θ(2(3M + 4)(nz ·

ny
px + nz ·

ny
py )), and

W stencil
YZ = Θ(2(3M +4)(nx ·

ny
py +nx ·

nz
pz )). Since nx ≫ ny ,nz , the

communication volume of stencil on X-Y decomposition is much

smaller than that based on Y-Z decomposition. This fact is demon-

strated again by Figure 7. Accordingly, the communication time of

stencil using X-Y decomposition is the shortest. Compared with the

original algorithm using Y-Z decomposition, the communication-

avoiding algorithm needs a little more communication volumes

for stencil, because some redundant data from four small trian-

gle halos (Figure 4) have to be transferred for executing several

iterations of stencil computation with no communication. But, the

new strategy reduces the communication frequency from 13 to 2

in each iterative step (M = 3, and see Section 4.3.1). As one com-

munication involves about 20 MPI_Isend and MPI_Recv operations

(due to the length of ξ being ten), over 200 communication opera-

tions are avoided successfully in Algorithm 2. Consequently, the

new algorithm achieves 3x-6x (on average 3.9x) speedup for the

communication in the stencil updating (Figure 7). Compared the

new algorithm with the original algorithm using Y-Z decomposi-

tion scheme, the communication time for the stencil computation

decreases from 17, 400 seconds to 2, 800 seconds on the 1024 cores.

In Figure 8, we give the runtime of the dynamical core. Com-

pared with the original algorithm with X-Y decomposition, the

communication-avoiding algorithm reduces the total runtime by

54% at most, when p = 512. Compared with the original algorithm

with Y-Z decomposition, the new algorithm achieves on average

1.4x speedup for the runtime, due to the time for collective com-

munication dominating the total runtime and about 30% of the

communication volumes of the collective communication being

reduced. On 1024 cores, about 113, 500 seconds and 46, 300 seconds

are saved by the new algorithm respectively compared with the

original algorithms under X-Y and Y-Z decomposition schemes.

5.3 Theoretical Analysis
In order to analyze the synchronization, communication, and com-

putation of processors in the parallel computation, a general theo-

retical model is proposed in [16]. This theoretical model counts the

amount of work and data movement as a maximum of any execu-

tion path during the parallel computation (refer to [16]), which is

elegant and realistic. Based on this model, by the similar analysis

in [17], we can deduce the number of words of dataW moved by

each processor (communication cost) and the number of synchro-

nizations S (network latency cost) of the communication-avoiding

algorithm as follows:

WCA = Θ(2MK(nx
ny

py

nz
pz

· log(pz ))), SCA = Θ((2M + 2)K),

while the corresponding costs of two original algorithms are

WYZ = Θ(3MK(nx
ny

py

nz
pz

· log(pz ))), SYZ = Θ((6M + 4)K),

and

WXY = Θ(6MK(nz
ny

py

nx
px

· log(px ))), SXY = Θ((9M + 10)K).

Sincenx is usually larger thannz , it is obvious thatWXY ≫WYZ >

WCA, and SXY > SYZ > SCA, which is consistent with the numer-

ical results. Hence, the communication and latency costs of our

communication-avoiding algorithm are more close to the lower

bounds than those of the original ones.

For the collective communication, the new algorithm avoids

collective communication along x direction in Fourier filtering, and

eliminates one third of summation operations along z direction

by using an approximate nonlinear iteration. The performance

improvement of the new algorithm on the collective communication

is able to be well kept for more processors. For the communication

in stencil computation, each processor only needs to communicate

with its neighbors, which is not changed with the increasing of the

total number of processors. Hence, our optimization method for the

communication in stencil computation is scalable. Thus, we assert

that the performance improvement on communication would be

always achieved by our communication-avoiding algorithm even
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when a much larger number of processors are used for higher

resolution simulations.

6 CONCLUSIONS
This paper has obtained the operator form of the calculating flow

in the dynamical core of AGCM. Furthermore, it is abstracted out

that the stencil-collective alternate action is the basic operation

in the dynamic core. Furthermore, several optimization strategies

have been proposed to improve collective communication and local

communication in the dynamical core respectively, which leads to

an efficient communication-avoiding algorithm. This work also has

shown an experimental evaluation of the new algorithm, demon-

strating significant performance improvement on communication.
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