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ABSTRACT
With more attention attached to nuclear energy, the formation
mechanism of the solute clusters precipitation within complex
alloys becomes intriguing research in the embrittlement of nu-
clear reactor pressure vessel (RPV) steels. Such phenomenon can
be simulated with atomic kinetic Monte Carlo (AKMC) software,
which evaluates the interactions of solute atoms with point defects
in metal alloys. In this paper, we propose OpenKMC to acceler-
ate large-scale KMC simulations on Sunway many-core architec-
ture. To overcome the constraints caused by complex many-core
architecture, we employ six levels of optimization in OpenKMC:
(1) a new efficient potential computation model; (2) a group reac-
tion strategy for fast event selection; (3) a software cache strategy;
(4) combined communication optimizations; (5) a Transcription-
Translation-Transmission algorithm for many-core optimization; (6)
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vectorization acceleration. Experiments illustrate that our OpenKMC
has high accuracy and good scalability of applying hundred-billion-
atom simulation over 5.2 million cores with a performance of over
80.1% parallel efficiency.
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1 INTRODUCTION
Nuclear energy is an energy source released by nuclear reactions,
which is most frequently utilized to provide emissions-free elec-
tricity around-the-clock in the nuclear power plant. Approximately
13% of the world’s electricity is supplied by nuclear energy at
present [28, 37]. However, the workloads on nuclear reactor compo-
nents deteriorate them gradually and bring declining efficiency of
their functionality. The primary contribution to the nuclear reactor
pressure vessel (RPV) degradation can be attributed to the forma-
tion of Cu rich precipitates in RPV steels under neutron irradiation.
Such solute clusters formation processes can be simulated at the
atomistic level with kinetic Monte Carlo (KMC) methods [3, 20].

The Monte Carlo methods comprise several techniques such as
atomic kinetic Monte Carlo (AKMC) [4], object kinetic Monte Carlo
(OKMC) [2, 7, 9] and event kinetic Monte Carlo (EKMC) [19]. In this
paper focus is laid on the AKMC simulation, where point defects are
introduced in the system. In such simulation, the migration energy
of the vacancy is highly important. These elementary properties are
not known at the atomic level experimentally and can be obtained
by ab initio calculations [5, 6]. Such calculations have been made
to investigate the kind of interaction which exists between the
point defects and the Cu, Ni, Mn and Si solute atoms [37], and used
to model the microstructural evolution of a dilute FeCuNiMnSi
complex alloy [27, 38].

Numerous research teams have been working on developing dif-
ferent AKMC approaches to simulate the microstructural evolution
of metal alloy in RPV [1, 35, 37]. However, such softwares only have
serial versions, and employ conventional empirical potential model
extensively. Thus, their efficiencies are restricted in large-scale sim-
ulation. Here we propose a parallel AKMC software, OpenKMC, to
accelerate simulation progress. We use a pair potential model in
energy computation and divide the workloads on each process into
fine-grained sectors for avoiding hop conflicts. Moreover, a series of
optimization strategies are proposed to reduce the communication
time and to avoid frequent global memory accesses.

In practice, there are also high demands to accelerate KMC sim-
ulations on supercomputers. Thus we implement and optimize our
OpenKMC software on SW26010 processor, which is the main build-
ing block of the world-leading supercomputer Sunway TaihuLight.

The major contributions in this paper include:

• We employ a pair potential model to obtain the interaction
energies without involving redundant computations.
• We partition the data into fine-grained sectors to solve hop
conflicts at the shared boundary and use group reaction strat-
egy to accelerate the selection of events in each simulation.
• A cache optimization strategy is implemented to fully utilize
the memory bandwidth.
• We do a series of optimization for communication to elimi-
nate the communication redundancy, reduce synchronous
time and decrease communication frequency adaptively.
• We design a Transcription-Translation-Transmission algo-
rithm and achieve vectorization to accelerate the computa-
tion procedure on SW26010 processor.

The remainder of this paper is organized as follows. In Sec. 2 we
succinctly summarize the fundamental background of this study
and discuss the challenges of parallel KMC on SW26010. Then
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Figure 1: Three kinds of nearest neighbors for a bcc lattice.
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Figure 2: The serial AKMC method for vacancies hops.

our optimization schemes and their efficient implementation are
discussed in Sec. 3. Furthermore, performance is evaluated exhaus-
tively in Sec. 4. Eventually, Sec. 5 summarizes the main ideas and
findings of this work.

2 BACKGROUND
2.1 Atomistic Kinetic Monte Carlo Method
The AKMC method is mainly utilized to provide an accurate solu-
tion that governs the evolution of the microscopic system. In our
case, all events in simulation occur in the body-centred-cubic (bcc)
lattice, and a diffusional hop event for point defects in it is consid-
ered as an exchange of a vacancy with the first 8 nearest neighbor
atoms. Fig.1 shows the first, second and third nearest neighbors
respectively for a central atom in a bcc lattice (length is 2l ). As Fig.2
shows, the solution could be built by four basic steps generally.

Computing the probabilities of various possible hops from the
current state for vacancies is the first step, and this could rely
directly on the corresponding transition rates. The probability for
an event X in the evolution is formulated as Boltzmann factor
frequency here, namely:

ΓX = Γ0 · exp(−
EXa
kT

) . (1)

Here Γ0 is an attempt frequency (s−1),T is the absolute temperature,
and EXa is the event migration energy (eV). The attempt frequency
Γ0 is set to 6 × 1012 s−1. Taking the computation time and the
precision of the results into account, we obtain an event migration
energy EXa by employing an environment-dependent model [7],
which satisfies the following balance rule:

EXa = E0a +
1
2
· (Ef − Ei ) . (2)
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The reference activation energy E0a (Fe:0.65 eV, Cu:0.56 eV used in
this work) is assumed to depend only on the chemical nature of the
migrating atom that exchanges position with the vacancy. Ei and
Ef are the system total energies respectively before and after the
vacancy hops [4, 30].

Then the residence time algorithm [41] is employed to calculate
a time increment (∆t ) in Equation 3, and it is proportional to the
inverse of the sum of all possible event frequencies with a random
number (r ) according to its probability so that the event propagation
is associated with each independent event.

∆t =
− ln r∑
X=1,8 ΓX

(3)

The next step is to determine a jump for each vacancy ran-
domly with a weight corresponding to its probability, and up-
date energies caused by these vacancies hops. At the same time, a
time increment (∆t ) is accumulated on the simulation. Finally, the
AKMC method repeats the steps above until the simulation time
has reached a preset threshold.

In addition, when computing energies in the first step, many
models have been proposed by using the empirical interatomic
potentials. One of the empirical potential is the embedded-atom
method (EAM) [8], where the interaction energy of atoms is con-
tributed by both the pairwise potential (up to the third nearest
neighbor) and the many-body potential (the environmental depen-
dence term)

EEAM =
∑
µ



1
2

3∑
i=1

∑
ν

ε
(n)
(µν ) + F (ρµ )


, (4)

where µ,ν label the atomic index, F is the multi-body embedding
energy, ρµ is the total electron density interpolated at host atom µ.

The EAM model has been widely used in a wide range of simu-
lation applications [8, 11]. However, the EAM potential needs to
be generated from ab initio calculations, and at present, there is no
EAM potential for complex FeCuNiMnSi alloys and for the intersti-
tials which are needed in the real nuclear engineering simulation.

On the other hand, the pair interaction model [34] can deal
with such complex alloys [37] and the interstitials [38]. In the pair
potential model, the interactions are considered up to the second
nearest neighbor positions, and the chemical interactions between
all the entities which compose the system have been described by
the following equation

Epair =
∑
j ε

(i )
(Fe−Fe) +

∑
k ε

(i )
(V−V) +

∑
l ε

(i )
(Fe−V)

+
∑
m ε

(i )
(Fe−Cu) +

∑
n ε

(i )
(V−Cu) +

∑
p ε

(i )
(Cu−Cu) , (5)

where i equals 1 or 2 and corresponds respectively to the first or
second nearest neighbor interaction, j the number of Fe-Fe bonds,
k the number of V-V bonds, l the number of Fe-V bonds, m the
number of Fe-Cu bonds, n the number of V-Cu bonds, p the number
of Cu-Cu bonds of the lattice.

The limitation of the pair interaction model is the lack of many-
body potentials, so it cannot account for the influence of the local
environment. In addition, the pair potential parameters need to be
carefully tuned with experiments or thermodynamical data [37, 38].
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Figure 3: The general architecture of the SW26010 many-
core processor.

The pair potential parameters used in this work are taken from
Ref. [38], which can reproduce the EAM model result and also be
extended in the dilute FeCuNiMnSi alloy studies.

2.2 Sunway TaihuLight and SW26010
Many-Core Processor

The world-leading supercomputer, Sunway TaihuLight, ranks as
the third machine currently in the world and achieves a peak perfor-
mance over 125 Pflops. The Sunway TaihuLight is mainly enabled
by China’s custom SW26010 many-core processor [13].

Fig. 3 exhibits the basic architecture for SW26010 processor.
Each processor consists of four core groups (CGs) and they are
connected to each other via the network on chip (NoC). Each CG
includes 65 cores: 1 management processing element (MPE), and
64 Computing Processor Elements (CPEs), organized as an 8 × 8
mesh. The processor connects to other outside devices by a system
interface (SI). Both the MPE and CPEs work at 1.45GHz and 256-
bit vector instructions are supported. A CG has roughly 34.1 GB/s
theoretical peak memory bandwidth and around 765 GFlops double-
precision peak performance [12].

The SW26010 architecture is significantly different from other
multi-core or many-core processors. For the memory hierarchy, the
L1 data or instruction cache are both 32 KB on MPE, and a unified
256 KB L2 cache is also configured on it. Each CPE has a 16 KB L1
instruction cache, and a 64 KB local store (user-controlled scratch
pad memory, SPM). For the internal communication of CPE mesh,
we have a register communication mechanism including 8-column
and 8-row communication buses respectively. The register com-
munication in CPE mesh provides the possibility for establishing
fast data transmission channels so that a significant data sharing
capability is obtained on the CPE level [13, 23].

2.3 Parallel AKMC Implementation
To extend the time and length scales of the KMC simulation, the
parallel KMC algorithm is desired. Here we implement the opti-
mized algorithms in SPPARKS [17], and adapted the semirigorous
synchronous sublattice method of Shim and Amar [32] to solve
boundary inconsistencies and avoid global communications. As the
effects could be neglected if the event occurs far away from the
current site [31], the parallelism is enabled by decoupling events
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rounding dotted square of sites it needs, some of them
owned by other processes. The right part exhibits the sites
the process will send and receive in 3 exchanges (green, pur-
ple, yellow) from other processes to update the ghost cells
surrounding its first quadrant.

spatially. We exploit this idea in three levels. First, all data are par-
titioned to the available processors. Fig. 4 illustrates this idea in
a 2d simulation domain, split across a 2×2 grid of 4 processes on
SW26010. However, in the traditional algorithm, when two or more
processes perform events simultaneously near the shared boundary,
they could execute in conflicting hops with incorrect probabilities.

The second level is to solve this problem by dividing the sub-
domain into more fine-grained sectors, typically 4 quadrants in 2d
or 8 octants in 3d [31]. As shown in Fig. 4, all processes execute
events in sequence according to sector number on own sub-domain
independently for a period of time ∆tsyn . When moving to the
computation of the next sector in a process, sites in the boundary
region must be updated in advance. Fig. 5 presents the schematic
diagram for data transfers of ghost cells, which we adopt in this
paper. Here, we prepare the ghost cells from surrounding processes
to send to the ghost region for the current sector. Similarly, ghost
cells in local are also transferred to other processes. When the last
sector has been simulated, the total execution time for the system
increases ∆tsyn . Since every time the simulation is restricted in one

sector, more essential data are loaded to cache and higher cache
hits are obtained in this way.

A third, based on the architecture of SW26010, the computation
on sectors could be accelerated by utilizing CPEs in one CG. The
simulation task distributed on each process is further divided. At
this time, a part of CPEs play the role of messengers between
MPE and other CPEs and the rest of CPEs execute computation
task accurately. Here, a Transcription-Translation-Transmission
algorithm is presented and details are discussed in Sec. 3.4.

2.4 Related Work and Challenges of Parallel
OpenKMC

Different research teams have been devoting themselves to devel-
oping approaches of simulating the microstructural evolution of a
dilute metal alloy material for RPVs with more accuracy. Électricité
de France (EDF), owner of 58 power plants in France, has developed
a simulation software named LAKIMOCA [19, 37]. Atomic behav-
iors of dilute metal alloys could be predicted accurately and it is
suitable for long term kinetics. However, such AKMC software only
has a serial version, so the simulations of large systems could be ex-
ceedingly time-consuming. Customized KMCmodels are supported
in KMCLib [20]. For better load balancing, KMCLib rematches the
sites with the processes at each step, and the overhead for it is
expensive when running for large-scale simulation. SPPARKS [31]
is a KMC software using the synchronous sublattice method [32]
as the parallel algorithm. It includes several Monte Carlo models,
such as vacancy diffusion model, H/He diffusion on an Erbium
lattice model, Ising model, membrane model and Potts model for
grain growth. Crystal-KMC [22] is a parallel KMC software, but it
can only simulate vacancy diffusion in pure Fe lattice. Moreover,
the correctness is not validated in their work, and the scalability
for crystal-KMC is only 56% with 800 cores. Both SPPARKS and
Crystal-KMC code [22] cannot deal with the vacancy diffusion in
the dilute metal alloy systems such as vacancy assistant Cu pre-
cipitation in Fe lattice. Jiménez designed an OKMC software based
on GPU to simulate evolution in irradiated metal materials [18].
Nonetheless, the AKMC is not supported and diffusions of point
defects in dilute metal alloys cannot be simulated. Synchronous
parallel kinetic Monte Carlo (spKMC) [29] and its extension [26] to
discrete lattices were developed by E. Martínezet al.. Ising model is
implemented in spKMC based on a synchronous time decomposi-
tion algorithm, and it scales to 256 cores for total 1.1 billion atoms
with a parallel efficiency around 82%. N.J. van der Kaap and L.J.A.
Koster developed a parallel kinetic Monte Carlo simulations [36]
that runs on a General Purpose Computing on GPU (GPGPU) board.
However, the application of it is limited for charge carrier transport
simulations on GPGPU. Total 4,096 cores are employed in their
work [36] and the efficiency of it changes from 85% to 0.4% dramat-
ically at different concentrations. Even though the various KMC
simulation softwares can help us understand the mechanisms, and
the modern computing clusters provide rich computation resources,
it is still challenging to develop a complete parallel KMC simulation
software especially on Sunway processors with complex many-core
architecture.

When parallelizing the KMC simulation, a process has to syn-
chronize with surrounding processes for sharing data or finishing
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Figure 6: Group reaction strategy for event selection and up-
date. The event that red triangle point falls into is selected,
and the adjacent one with black square point is filtered out.

dependencies. On modern processors, especially many-core archi-
tectures, the cost for synchronization is exceedingly expensive and
sometimes it dominates the time of the whole simulation. Further-
more, CPEs have no data cache, and the last buffer from each CPE
to shared memory is the 64 KB SPM. This forces us to access the
shared memory frequently for exchanging data if no other solution
is proposed. At last, the Direct Memory Access (DMA) operation on
SW26010 achieves its peak bandwidth only if the accessed address
is in an alignment of 128 bytes [10, 23]. Thus the size of each cache
line should be a multiplier of the atom data structure size, or we
must do a transform between atom index and memory address,
which has a non-negligible penalty on memory access time.

3 OPTIMIZATION
To achieve efficient KMC simulation in large-scale clusters, we have
applied two categories of optimizations on OpenKMC. One includes
a pair potential model proposed from the perspective of physics
and the other is discussed based on parallel techniques.

In optimizations of the second category, group reaction strategy
in Sec. 3.1 and cache optimization are achieved to decrease over-
heads of computation. Then we use a series of strategies to cut com-
munication costs. At last, a Transcription-Translation-Transmission
algorithm and vectorization are implemented to utilize the extra
resources on CPEs. All these optimizations mentioned above are
introduced in this section.

3.1 Group Reaction Strategy
In each iteration of the KMC simulation, an event needs to be picked
up from a list of the events according to their relative probabilities.
A common choice is to perform a linear scanning over all the events
to select one, which scales asO (N ) for the total N events [31]. The
list of the events can also be organized as a binary tree, which scales
as O (log2N ). However, the performance is still unsatisfactory and
we turn to use the O (1) scaling group reaction Strategy, which
regroups propensities and is constant in selection [31, 33].

Fig. 6 illustrates group reaction strategy. Firstly, total N propen-
sities from pmin to pmax (8pmin ) are grouped to G groups. In this
case, the upper bounds for each group are 2pmin , 4pmin and 8pmin
respectively. Then, a group is chosen randomly in selection step.
Secondly, within the selected group, we consider a set of Nlocal
reaction propensities with largest value plocalmax . We pick a uni-
form random integer i from 1 toNlocal and a random value r from 0

P0 P1 Pn-1 Pn

Global ID

V Fe Cu V
Atoms

(int Type)

(int Type)

Position (double Type)
x0 y0 z0 xn yn zn

SoA

x0 y0 z0P0 V

Extract

Pack

x0 y0 z0P0 V xn yn znPn V
32 bits AoS

Figure 7: Packing data for DMA access to make accesses con-
tinuous and aligned by software cache strategy.

to plocalmax in this group. A reaction i is rejected if pi < r , such as
the black square point in Fig. 6. This step will loop until pi ≥ r like
the red triangle point, which means the event with the propensity
p4 is chosen. Thus the group reaction strategy scales as O (1).

3.2 Cache Optimization Strategy
Since the simulation domain is partitioned across processors, each
processor owns the computation cells within its sub-domain and a
shell of surrounding ghost cells. The ghost cells on each processor
will not execute events while they are involved in boundary sites
computation. However, unlike contiguous storage for computation
cells, the update of the ghost cells is promoted stochastically. These
discrete and randommemory accesses to different arrays lead fewer
cache hits.

In computer science, average memory access time (AMAT) is a
common metric to analyze memory system performance by em-
ploying three factors including hit time, miss rate, and miss penalty.
Hit time is the time to hit in the cache. Miss rate (MR) is the fre-
quency of cache misses, and miss penalty is the average cost of a
cache miss in terms of time (AMP). Concretely it can be defined in
Equation 6 [15].

AMAT = Hit time +Miss rate ·Miss penalty (6)

To reduce AMAT, we can target each of these factors, and study
how these can be decreased. On SW26010 processor, when cache
line size is 256 bytes, it will reach the peak bandwidth even if the
accessed address is distributed randomly [10]. Thus 256 bytes is
the minimum size to achieve peak bandwidth for random memory
access, and a larger size will increase MR and AMP. Though pre-
processing techniques are not available in KMC simulation, we can
rearrange the data structure and make full use of spatial locality in
cache as much as possible.

Fig. 7 shows the reorganization of the atom data from structure of
arrays (SoA) form to array of structures (AoS) form. We extract the
essential attributes of a lattice site including ID, type and position,
and pack them together into a new atom data structure of 32 bytes
for ghost cells before communication. When we fetch cache lines
frommemory, memory access blocks are always aligned since cache
lines are formed by 8 atom data structures (total 256 bytes). At the
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same time, we can also make full use of spatial locality of cache
because adjacent ghost cells are generally accessed successively.

3.3 Communication Optimization Strategies
In this section, we perform communication optimization from three
different aspects. First, ghost cells are computed to cut down the to-
tal amount of messages and eliminate communication redundancy.
Then non-blocking consensus communication pattern is employed
for decreasing synchronous time by point-to-point operations. At
last, we present a self-adapting communication algorithm to reduce
the frequency of communication adaptively.

3.3.1 Ghost Cells Computation. Sites in the boundary region must
be updated in advance when a sector has been computed. Tradi-
tional methods for doing this, all data in surrounding sectors, are
transferred to the local directly. However, lots of data are redundant
since they are useless for the computation of the local sector. The
key point of ghost cells computation is to eliminate redundant data
transfers.

Ghost cells computation removes the data dependence by analyz-
ing the effect ranges of cutoff distance, and then divides local data
into more fine-grained chunks to transfer instead of transferring
the whole data in local.

3.3.2 Nonblocking Consensus Communication. Ghost cells are re-
quired to transfer to other processes when a synchronous time
∆tsyn is reached. As the left part of Fig. 8 shows, one common
communication pattern is Personalized Exchange Algorithm (PEX).
Each process writes the data sizes to send to each peer in a vector
with P elements and the vector is redistributed with a personal-
ized exchangeMPI_Alltoall [14, 40]. Then all processes post their
receive and respective send operations.

Though PEX communication is intuitive and easy to achieve,
the MPI_Alltoall operation of it is quite expensive and the time
needed to complete PEX on P processes is Θ(P ) [24, 25]. Conse-
quently, a scalable algorithm, Non-blocking Consensus Commu-
nication (NBX) [16], is adopted in this paper. The right part of
Fig. 8 describes the NBX communication. This method utilizes
non-blocking collective operations and they can be started and
completed independently. The process uses MPI_IProbe to query
the information beforehand, and launch MPI_Recv afterwards to

receive the ghost cells data. Since non-blocking point-to-point op-
erations are used, a mass of transmission and synchronous time are
saved, and the time to perform NBX on P processes is Θ(log(P )).

3.3.3 Self-adapting Communication Algorithm . As discussed pre-
viously, the synchronous time ∆tsyn of sub-domains is a crucial
factor for communication. A smaller value of ∆tsyn means the ghost
cells are updated frequently, and accurate simulation results are
obtained. However, frequent communication brings a poor parallel
efficiency since not all communication is necessary. By increasing
∆tsyn , the parallel efficiency is greatly improved, while the lower
accuracy of simulation results is now much more pronounced.

Since the rate of growth of hop events could change during the
simulation, it will be highly difficult to find a proper constant that
satisfies both accuracy and efficiency requirements at long times.
Therefore, we propose a self-adapting communication algorithm by
utilizing the current state of the system including the propensities
and hops number to perform communication adaptively.

First, we consider an idealized physical system consisting of a
great number of identical events, each with propensity p. The total
number of events is N , then the time for n events is computed by:

t =
n

N × p
=

n/N

p
. (7)

The fraction of the events in the sector is E, which equals to (n/N )×
100%. A good estimate for the number of events performed is given
by this parameter. We exploit this relationship by defining ps as
the total propensity of events in a sector, divided by the number
of active events in it. Then the initial synchronous time ∆tsyn for
sub-domains is obtained by

∆tsyn = min(E/pmax , threshold −T ) , (8)

where pmax is the maximum ps across all processors, threshold is
a preset total simulation time, and T is current simulation time.

In SPPARKS [31], the propensity is regarded as dynamically
changing so that a ∆tsyn dependent on it is enough to adjust the
simulation schedule. However, the propensity in AKMC simulation
basically remains unchanged and a more accurate self-adapting
algorithm is required. Thus, we further trace the number of events
that the atom hops to another process during the synchronous
interval. The self-adapting communication indicates that commu-
nication occurs only when jumps happen, or the simulation will
continue without communication even though the current ∆tsyn
is satisfied.

The workflow of the self-adapting communication algorithm is
shown in Algorithm 1. Taking the dual factors of propensity and
jumps number, the adaptive algorithm could obtain a good balance
between accuracy and efficiency.

3.4 Transcription-Translation-Transmission
Algorithm

In this subsection, we propose a Transcription-Translation-Transmission
(3T) algorithm to utilize the CPEs on SW26010 for further improv-
ing the performance of OpenKMC, which is inspired by the process
of gene expression in biology and on the basis of the architecture
of SW26010. Fig. 9 presents the whole process of our algorithm,
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Algorithm 1 Self-adapting Communication Algorithm
Require:
E: The fraction of the events in the sector.
threshold : A preset total simulation time.
T : The current simulation time.
pthreshold : The propensity threshold for jumping events.
tstop : A default synchronization interval.

1: plocal max ← 0
2: for i = 0 to sectors do
3: nactive ← Number of active sites in current sector.
4: ps ← Total propensity of events in current sector.
5: ps ← ps/nactive
6: plocal max = max(ps ,plocal max)
7: end for
8: pmax ← maximum plocal max across all processors.
9: if pmax > 0 then
10: ∆tsyn ← E/pmax
11: else
12: ∆tsyn ← threshold −T
13: end if
14: ∆tsyn = min(∆tsyn , threshold −T )
15: while T ≤ threshold do
16: for j = 0 to sectors do
17: while t < ∆tsyn&&jumpsb <= 0 do
18: plocal max ← The total propensity of events.
19: Execute jumping events.
20: jumpsb ← The number of boundary events.
21: Calculate dt
22: t+ = dt
23: end while
24: Communication.
25: end for
26: T+ = ∆tsyn .
27: pmax ← maximum plocal max across all processors.
28: if pmax > 0 then
29: ∆tsyn ← tstop/pmax
30: else
31: ∆tsyn ← threshold −T
32: end if
33: ∆tsyn = min(∆tsyn , threshold −T )
34: end while

where the green MPE core is Template MPE, the 8 purple cores are
Messenger CPEs and the other 56 yellow cores are Translation CPEs.

The 3T algorithm describes the thread-level parallelism method
and works in this way: First, the data are copied from MPE to
the messenger CPEs and translation CPEs; and then, the data are
computed on translation CPEs and copied to messenger CPEs via
fast register communication; finally, the results are transferred back
from the messenger CPEs to the MPE.

Transcription. Transcription is the first step of 3T algorithm. First,
the data of atoms are diapatched from Template MPE to Translation
CPEs. At the same time, lots of same parameters are also required
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Figure 9: The Transcription-Translation-Transmission algo-
rithm for accelerating computation byCPEs. The green, pur-
ple and yellow cores areTemplateMPE,MessengerCPEs and
Translation CPEs respectively. Each Messenger CPE will be
paired with 7 Translation CPEs in the same row and they
will share data using fast row register communication.

for each Translation CPE. Because of the low communication ef-
ficiency between MPE and CPEs, the computation on Translation
CPEs has to wait until all parameters have been transferred. Here
we utilize Messenger CPEs to accomplish this task. When the data
are diapatched to Translation CPEs, the Messenger CPEs start to
fetch essential parameters simultaneously and the parameters are
repacked to corresponding Translation CPEs by fast register com-
munication directly. Thus the computation could start immediately
when atoms data have been transferred to Translation CPEs.

A distance calculation between lattice site i and j is illustrated as
an example here. The raw data of atoms i and j , including the type,
ID and position, are repacked and transferred from Template MPE
to Translation CPEs respectively. At the same time, Messenger CPEs
obtain a series of parameters including cutoff radius and boundary
conditions from Template MPE. Then the parameters are packed
and transferred to the corresponding Translation CPEs in the same
row by fast register communication. All data in cache of Translation
CPEs wait for being processed by translation step.

Translation. The translation step in 3T algorithm is to process
raw data into various simulation results on Translation CPEs. Every
7 Translation CPEs in the same row will be paired with one Messen-
ger CPE. In distance calculation example, a mass of computation is
performed to judge the neighbor relationship between two atoms.
The results generated by computation are stored in Buffer at once
for further judgment. If they are exactly neighbors to each other,
the results will be sent to the corresponding Messenger CPEs via
fast register communication instantly. Thus the time for compu-
tation on Translation CPEs and time for writing back to MPE are
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Figure 10: Inner j−sites vectorization. Four operations are
performed at once by employing SIMD instructions.

overlapped and a large deal of communication time between MPE
and CPEs is avoided.

Transmission. When results are sent to correspondingMessenger
CPEs utilizing fast register communication, theMessenger CPEs will
repack and transfer them to Template MPE. Translation CPEs will
start the next round computation simultaneously and these steps
will loop till all tasks dispatched by Template MPE are completed.

In fact, the Template MPE, Messenger CPEs and Translation CPEs
will work together and run separately in 3T algorithm. Through
decoupling the computation process of Template MPE and assigning
different roles on CPEs precisely, all CPEs work with its own desig-
nated task. Thanks to the Transcription-Translation-Transmission
algorithm, we accelerate KMC simulation efficiently by very fast
register communication on CPEs.

3.5 Vectorization
To exploit the available 256-bit SIMD vector registers, we also im-
plement vectorization in our work.

For distance calculation example in 3T algorithm, the pairwise
calculation needs to compute a large number of j-sites for each
i-site since massive sites are in the range of cutoff radius for every
i-site. Therefore, we prefer to use the sunway’s SIMD extension on
CPEs to perform 8 computation of j-sites at once for the same i-site.

In practice, some tough cases that prevent efficient vectorization
exist during the implementation on CPEs. One of the typical cases
is that memory accesses are irregular when CPEs fetch data from
MPE. The other case is that the overhead for writing back to MPE
is also extremely expensive.

For the first case, we have proposed a cache optimization strategy
on the data structure in MPE. The data are reorganized to an AoS
form which occupies 32 bits for each atom and adjacent data in
the data structure are accessed with high probabilities. Then only
selection and repack operations on data are performed before they
are transferred to CPEs. For the second case, the problem is solved
by Messenger CPEs. The results generated by Translation CPEs are
reorganized on Messenger CPEs simultaneously, which is profited
from the fast register communication on CPEs, and then they are
transferred to the cache in Template MPE.

Fig. 10 exhibits the comparison for scalar and vector operations
in part of distance calculation. By employing SIMD operations,
we exploit data-level parallelism and an inter-j-sites vectorization
method is implemented, which leads a more efficient computation
on CPEs.

4 EVALUATION
In this section, we describe our experimental evaluation elaborately.
The correctness, single node performance and scalability are all
evaluated, and the visualization for the Cu rich precipitates is also
presented as a supplementary to experiments.

4.1 Correctness Validation
In order to validate the accuracy of OpenKMC, a series of thermal
ageing simulations have been performed between 663 and 773 K for
a binary Fe-1.34 at.%Cu alloy compared to the experiments of Lê et
al. [21] as well as the simulation results of Vincent et al. [37]. We
trace the evolution of simulation for 105 seconds (rescaled time), and
a vacancy concentration accounting for 8 × 10−4 at.% is introduced
within this space. The simulation time is rescaled in order to obtain
a corresponding physical time scale by employing all simulation
parameters according to Vincent et al.’s work [39]. For each simu-
lation, a bcc lattice of 40 unit cells is employed in each of the three
space dimensions with periodic boundary conditions. The precipita-
tion advancement factor has been calculated as Equation 9 [21, 37],
where CX (t ) is the Cu concentration in the solid solution at time
t , which tends towards the solubility limit CX (∞). The precipita-
tion kinetics predicted by our OpenKMC are performed on a single
node of TaihuLight (4 MPEs with 256 CPEs) and a process of Intel
Xeon E5-2670 both for EAM and pair potentials, and the results are
compared to the real experiments obtained by electrical resistivity
measurements in Fig. 11.

ζ (t ) = (CX (0) −CX (t ))/(CX (0) −CX (∞)) (9)

It is clear that the Cu precipitates progressively during the ther-
mal aging simulation and the precipitation kinetics predictions of
our OpenKMC reproduce globally well the Vincent et al.’s work [39]
on both architectures. As for the comparison with the experimental
results [21], the simulation curves can, at least in a qualitative way,
well describe the evolution of the system with time, although some
quantitative deviation still exists, which comes from the simpli-
fied model (e.g. only one type of defects, i.e. the point defects, are
taken into account) and the lack of many-body interactions and
long-range interactions between atoms.

The accuracy is also evaluated when communication optimiza-
tions have been performed. We employ 16 processes both on Intel
Xeon E5-2670 and SW26010. As Fig. 11 shows, the OpenKMC could
obtain a sufficiently accurate simulation while the total runtime
consumes only half under this case on two architectures. Thus a
high simulation accuracy is guaranteed by OpenKMC with com-
munication optimizations.
4.2 Single Node Evaluation
Fig. 12 demonstrates the performance improvements for different
kinds of optimization methods with high and low concentration
respectively on one SW26010 node which contains 260 cores (4
MPEs with 256 CPEs). A higher Cu concentration with 12.0 at.%
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Figure 11: Precipitation evolution of thermally aged Fe-1.34
at.% Cu alloys. The green squares correspond to the experi-
mental results of Lê et al. [21], the black squares to the Ki-
netic Monte Carlo results by Vincent et al. [37] and other
curves to the OpenKMC results with EAM potentials or
pair potentials on different platforms. The word ’Comm’ in
parenthesesmeans the OpenKMC is evaluated with commu-
nication optimization.

of atoms and a vacancy concentration accounting for 12.8 at.% are
used in high concentration evaluation, and other configurations
are the same as the study case in Vincent et al.’s work [37].

As shown in Fig. 12(a) and Fig. 12(c) , initially, the energy com-
putation kernel’s performance is heavily dominated by EAM poten-
tials, and we have a distinct speedup for this kernel after utilizing
the optimized pair potential model from the physical perspective.

Fig. 12(b) and Fig. 12(d) give a comparison of different versions
optimized by a series of methods from the algorithm perspective
using pair potential. First, the traversal and updating time is de-
creased by group reaction strategy. Then the idea of packing atomic
data also provides a slight speedup since it reduces many unaligned
memory accesses. For the Self-adapting Communication algorithm,
we can see that the simulation becomes much faster than the previ-
ous version and half of the communication time is reduced.

Next, we try to accelerate the computation process on CPEs
by 3T algorithm and vectorization. In the thread-parallelism, the
calculation of the vacancy events are loaded into CPEs. When high
concentration is employed, enough computation tasks are guar-
anteed on each CPE and Fig. 12(b) gains an obvious speedup at
this step. However, only one vacancy exists in simulation space
if a low vacancy concentration 8 × 10−4 at.% is introduced. Thus
the potential of many-core resources is not fully tapped and the
employment of CPEs brings in extra overhead in Fig. 12(d) .

At last, the final design is 7.76 times faster than the first pair
potential version in Fig. 12(b) and gain amore than 33.88 fold overall
speedup compared to the original EAM version in Fig. 12(a) with a
higher vacancy concentration.

To investigate the influence of vacancy concentration on perfor-
mance, a detailed comparison is schematically depicted in Fig.13,
where the many-core optimization adopts 3T algorithm and vec-
torization on CPEs compared to the general optimization. As the
vacancy concentration is set to 8×10−4 at.% (at the Cu concentration
of 1.34 at.% and the temperature of 573 K), the running time in the
simulation increases, rather than decreases, when the many-core
optimization is applied. It is because when the number of the vacan-
cies is too low, the amount of the computational tasks allocated to
each core is so small that the time for many-core initiation and data
communication occupies a large proportion of the simulation time,
and thereby, makes the performance number significantly deceases
(from 3.82 at the concentration of 12.8 at.% to only 0.31 at that of
8× 10−4 at.%). However, when the vacancy concentration increases
to 32.0 at.%, the performance number becomes even better (5.29)
than that at 12.8 at.%.

It may be worth noting that the performance number depends
on the number of vacancies per CPE, instead of the concentration of
the vacancies. It is because the parallelization is over the vacancies
in the simulated system. Therefore, when the total number of atoms
in the system is sufficiently large, the performance number of the
many-core optimization can still be satisfactory even at a very low
concentration of vacancies.

4.3 Scalability
In this subsection, we evaluate the scalability of our OpenKMC on
Sunway TaihuLight. To achieve a balance between simulation size
for strong scalability and the limited memory on SW26010 (total
8 GB per CG), we take the performance of 5,000 CGs (5,000 MPEs
with 320,000 CPEs) as a baseline, which simulates about 11 million
(1.1 × 107) atoms per process. The memory needed per simulated
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timization steps cumulated on a SW26010 processor with a
high concentration (12.8% for vacancies and 12.0% for Cu in
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atom is approximately 0.72KB in this configuration. Accordingly,
the weak scalability also initializes the simulation from one CG (1
MPE with 64 CPEs) with 11 million atoms as a baseline.

For the strong scalability, a case of 54 billion (5.4 × 1010) atoms
is presented with the thermal aging at 300◦C (573K). Since the Cu
clusters are formed by vacancies hops, we introduce 1.5× 10−4 at.%
of Cu atoms and 8×10−5 at.% of vacancies within this configuration.
The total number of Cu atoms and vacancies are 43,200 and 81,000
respectively, which ensures at least one impurity element for each
process on average when 5.2 million cores are used. The simulation
time is rescaled in order to obtain a physical time scale and in this
case, the simulation time of 2.26 × 10−2 is rescaled to 3 months.

0

20

40

60

80

100

120

325,000
650,000

1,300,000

1,950,000

2,600,000

3,900,000

5,200,000

0

20

40

60

80

100

120

75.46

36.82

18.03
12.78 9.83 6.71 5.21

100.0%102.5%104.6%
98.4% 96.0% 93.7% 90.6%

S
im

ul
at

io
n 

T
im

e 
(s

)

P
ar

al
le

l E
ff

ic
ie

nc
y 

(%
)

Cores (MPEs+CPEs)

Communication
Computation

Parallel Efficiency

Figure 14: Strong scalability for 54 billion (5.4 × 1010) atoms
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annotated on the top of bars and ttriangles respectively.

Fig. 14 shows the performance to this case for strong scalability
when the number of cores varies from 325,000 to 5,200,000. We
can see that the computation time dominates a larger proportion
of the whole simulation and both of the computation and commu-
nication time decrease with more cores. As Fig. 14 displays, even
when the number of cores increases to 5.2 million, the parallel effi-
ciency is still around 90%, which indicates good strong scalability
for OpenKMC. The actual speedup is almost equivalent to the ideal
one under this larger simulation size and especially when the cores
are less than 1.3 million, the dual remarkable benefits brought by
group reaction strategy and communication optimizations lead a
superlinear speedup.

Fig. 15 illustrates the weak scaling performance with a baseline
of one CG (1 MPE with 64 CPEs). Since each CG is a single process,
the fast DMA operations between MPE and CPEs within a CG is not
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considered as communication time. We initialize the simulation box
with an average of 11 million (1.1×107) atoms per process. It can be
seen that it keeps a high parallel efficiency with the growth of cores
and ultimately reaches 5.2 billion cores. At last, it reaches about
840 billion (8.4 × 1011) atoms and achieves a parallel efficiency of
80.1%. It’s worth noting that nearly all parallel efficiencies approach
100% when the cores are less than 3.9 billion. This illustrates that
OpenKMC has the ability to simulate a large-scale physical system
with large-scale parallelism. As can be seen in Fig. 15, the compu-
tation time remains almost constant on different number of cores.
However, the communication time is a little higher on 5.2 billion
cores, which is mainly caused by communication contention.

The phenomenon that parallel efficiencies approach or exceed
100% in scaling experiments can be analyzed by

Ttotal = Tevent +Tcomp +Tcomm , (10)

where Ttotal is total execution time, Tevent is time for selection
and update of events, Tcomp refers to the computation time and
Tcomm is communication time. First, group reaction strategy is a
O (1) algorithm. The number of groups is decreased with the num-
ber of sites per processor shrinks as processors are added. Thus, the
overheads for event selection and update are extensively reduced,
which contributes a lot to the performance improvement. Then the
computation part could also be run in parallel over all available pro-
cesses. At last, according to Equation ?? and Equation ??, Ncomm
decreases obviously while v almost unchanged with highly increas-
ing cores. Since the sub-domain shrinks when more processes are
employed, the proportion of hop events on boundaries increases
and ∆tsyn will maintain a larger value for a longer time. Therefore,
Tcomm is reduced as processes increase. As for weak scalability,
Tevent and Tcomp remain basically unchanged. With the increase
of cores and simulation size, the performance drops gradually while
the slight difference in ∆tsyn brings a tremble occasionally.

The scaling studies on both strong and weak scalability for suffi-
cient large systems (30,000 CGs are used) are also performed, which
adopts the same vacancy concentration (8 × 10−4 at.%), Cu con-
centration (1.34 at.%) and temperature (573 K) with Vincent et al.’s
work [37]. Results reveal that as the number of cores increases, the
parallel efficiency does not change much.

In addition, with the Cu concentration (1.34 at.%) and the tem-
perature (573 K) fixed, we have also performed the scaling studies
at various vacancy concentrations, with the results shown in Fig.16.
It can be seen that within a wide concentration range (from 8×10−5
at.% to 8×10−1 at.%), the parallel efficiencies are always satisfactory.
Especially, at a vacancy concentration of 8×10−1 at.%, the efficiency
of the strong scaling is as high as 233.6%, which is due to a large
number of vacancies (80 per CPE) in this case.

4.4 Visualization

(a) Original State (b) Final State
Figure 17: Visualization of the Cu precipitation before and
after the thermal ageing of the Fe-Cu alloy.

To further prove the validity of OpenKMC for long-time evo-
lution, simulations of thermal aging of a Fe-1.34Cu(at.%) are per-
formed at 663K for a rescaled time of 100 years. Also, we use a rigid
bcc lattice of 40 unit cells in each of the three dimensions, which is
the same configuration as Sec. 4.2 and Vincent et al.’s work [37].
The original and final states are displayed in Fig. 17.

At the beginning of the simulation, it is clear that all Cu atoms
are distributed randomly in the α-Fe ferrite matrix and no apparent
Cu precipitates are formed. However, the microstructural aspect
after 100 years of thermal aging is radically different than the one
obtained at the beginning. Obviously, precipitates have occurred
with the biggest Cu rich core composed of 542 atoms.

The formation of Cu precipitates in different size is coherent
with the thermodynamic theory, as was explained by Vincent [37,
38]. Thus, the result obtained with long-time evolution is another
powerful evidence for the validity of OpenKMC.

5 CONCLUSION
In this work, we propose a new parallel KMC design as OpenKMC
to simulate with hundred-billion-atom simulation on Sunway Tai-
huLight. Both the conventional EAM potential model and our opti-
mized pair potential model are supported in OpenKMC. To develop
a more efficient implementation on Sunway TaihuLight, we then
employ a group reaction strategy to accelerate the selection and
update processes for events and redesign the data structure to re-
duce the memory access cost. Moreover, a series of communication
optimization strategies and a novel 3T algorithm on CPEs are uti-
lized to further improve the performance markedly. Vectorization is
also implemented on CPEs that brings extra performance benefits.
Experiments show that OpenKMC provides high accuracy of KMC
simulation. Sustained performance of 90.6% parallel efficiency with
54 billion atoms for strong scaling simulation and 80.1% parallel
efficiency with 0.84 trillion atoms for weak scaling simulation are
obtained when using 5.2 million cores on Sunway TaihuLight.
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It is worth noting that many optimization strategies in our paper
such as group reaction strategy and 3T algorithm are quite generic
though they are optimized specially for SW26010. We believe that
our proposed methods could provide an inspiring experience to
algorithm design for other architectures, such as the heterogeneous
clusters and next-generation Sunway supercomputer.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
1.Abstract

Our artifact provides the code of OpenKMC for Sunway archi-
tecture (the building block of Sunway TaihuLight Supercomputer),
the benchmarks, along with the scripts to run these benchmarks to
evaluate our algorithm’s performance. As the code can be compiled
and run only on Sunway processor, we also briefly introduce how
to log in and use Sunway TaihuLight Supercomputer.

1.1 Artifact check-list
-Program: OpenKMC for Sunway architecture
-Compilation: Using the provided scripts via sw5cc compiler (the

customized compiler for Sunway architecture).
-Hardware: We provide a user account for evaluating our

OpenKMC on Sunway TaihuLight Supercomputer.
-Dataset: All of the experimental data used in our paper can

be found and run in the Home directory of the user on Sunway
TaihuLight.

-Run-time environment: Linux.
-Experiment Workflow: Login the provided user account; Run

build scripts; Run test scripts.
-Publicly available?: Yes
1.2 Hardware dependencies
The OpenKMC proposed in this work only uses SW26010 pro-

cessor on Sunway TaihuLight.
1.3 Software dependencies
The OpenKMC requires sw5cc compiler and MPI library, which

have already been installed on Sunway TaihuLight Supercomputer.
Moreover, a visualization tool Ovito is also needed.

1.4 Login to Sunway TaihuLight
-Land the homepage of the National Supercomputing Center in

Wuxi: http://www.nsccwx.cn/wxcyw/
-Select one VPN service: ‘Telecom’, ‘Unicom’ or ‘China Mobile’

on the top of the website. Please choose the best one for a better
connection.

-Login to Sunway TaihuLight Supercomputer:ssh 41.0.0.188.
1.5 Experimental configuration
For the correctness in Fig.11, we compare our optimized

OpenKMC on a single node of TaihuLight (4 MPEs with 256 CPEs)
and Intel Xeon E5-2670 v3 both for EAM and pair potentials to the
reference of Vincent’s work respectively. We trace the evolution of
solute atoms for 100000 seconds simulation (rescaled time) with the
thermal ageing at 663K,693K,733K,773K of FeCu alloys. For each
simulation, a bcc lattice of 40 unit cells is employed in each of the
three space dimensions with periodic boundary conditions. Then a
configuration of 1.34 at.% of Cu atoms and a vacancy concentration
accounting for 0.0008 at.% are introduced within this space.

For single node performance in Fig.12, both a high concentration
(12.8% for vacancy and 12% for Cu) and a low concentration (0.0008%
for vacancy and 1.34% for Cu) are used in the evaluation. Other
configurations are the same with the study case in correctness
validation.

For the strong scalability in Fig.14 , a case of 54 billion atoms
is presented with the thermal aging at 573K. Then we introduce
0.00015 at.% of Cu atoms and 0.00008 at.% of vacancies within this
configuration. The simulation time of 0.0226 is rescaled to 3 months.
For the weak scalability in Fig.15, we initialize the simulation box
with an average of 11 million atoms per process.

For the visualization in Fig.17, simulations of thermal aging of a
Fe-1.34Cu(at.%) are performed at 663K for a rescaled time as 100
years. Also, we use a rigid bcc lattice of 40 unit cells in each of three
dimensions. The visualizations are all done using Ovito software.

1.6 Experiments for reproducing Fig.11
-Build the binary.
$ cd ./online1/OpenKMC/
$ ./makeall.sh
-Entry the dir.
$ cd ./correct/
-Run a case.
$ ./test.sh -I test_name
1.7 Experiments for reproducing Fig.12
-Build the binary.
$ cd ./online1/OpenKMC/
$ ./makeall.sh
-Entry the dir.
$ cd ./breakdown/
-Run a case.
$ ./test.sh -I test_name
1.8 Experiments for reproducing Fig.14 to Fig.15
-Build the binary.
$ cd ./online1/OpenKMC/
$ ./makeall.sh
-Entry the dir.
$ cd ./scalability/
-Run a case.
$ ./test.sh -I test_name
1.9 Experiments for reproducing Fig.17
-Run Ovito.
-Load the output file generated by OpenKMC.
-Sort the atoms and obtain a rendered image.
-Save file.

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: Some author-created data artifacts
are NOT maintained in a public repository or are NOT available
under an OSI-approved license.

Proprietary Artifacts: No author-created artifacts are proprietary.
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List of URLs and/or DOIs where artifacts are available:
http://www.nsccwx.cn/wxcyw/

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: SW26010 processor consists of four
core groups (CGs) and they are connected to each other via the
network on chip (NoC). Each CG includes 65 cores: 1 management
processing element (MPE), and 64 Computing Processor Elements
(CPEs), organized as an 8 multiply 8 mesh. The processor connects
to other outside devices by a system interface (SI). Both theMPE and
CPEswork at 1.45GHz and 256-bit vector instructions are supported.
A CG has roughly 34.1 GB/s theoretical peak memory bandwidth
and around 765 GFlops double-precision peak performance.

Operating systems and versions: Linux version 2.6.32-
431.29.2.lustre.el6.x86_64

Compilers and versions: SWCC Compilers: Version 5.421-sw-500
(the customized compiler for Sunway architecture)

Applications and versions: OpenKMC

Libraries and versions: mpicc for SW version 2.2a

Key algorithms: self-adapting communication algorithm;
Transcription-Translation-Transmission Algorithm

Output from scripts that gathers execution environment informa-
tion.
$ cd ./online1/OpenKMC/
$ ./makeall.sh
sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M variable.cpp > variable.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M universe.cpp > universe.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M timer.cpp > timer.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M spparks.cpp > spparks.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M solve_tree.cpp > solve_tree.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M solve_linear.cpp > solve_linear.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M solve_group.cpp > solve_group.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M solve.cpp > solve.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M shell.cpp > shell.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M set.cpp > set.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M region.cpp > region.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M region_block.cpp > region_block.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M read_sites.cpp > read_sites.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M random_park.cpp > random_park.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M random_mars.cpp > random_mars.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M potential.cpp > potential.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M pair_lj_cut.cpp > pair_lj_cut.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M pair.cpp > pair.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M output.cpp > output.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M memory.cpp > memory.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M math_extra.cpp > math_extra.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M main.cpp > main.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M library.cpp > library.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M lattice.cpp > lattice.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M input.cpp > input.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M image.cpp > image.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M groups.cpp > groups.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M finish.cpp > finish.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M error.cpp > error.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M dump_text.cpp > dump_text.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M dump_image.cpp > dump_image.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M dump.cpp > dump.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M domain.cpp > domain.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M diag_propensity.cpp > diag_propensity.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M diag_energy.cpp > diag_energy.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M diag.cpp > diag.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M diag_cluster.cpp > diag_cluster.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M diag_array.cpp > diag_array.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M create_sites.cpp > create_sites.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M create_box.cpp > create_box.d↪→
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sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M comm_lattice.cpp > comm_lattice.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M cluster.cpp > cluster.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M app_vacancy.cpp > app_vacancy.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M app_lattice.cpp > app_lattice.d↪→

sw5cc -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-M app.cpp > app.d↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c app.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c app_lattice.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c app_vacancy.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c cluster.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c comm_lattice.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c create_box.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c create_sites.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c diag_array.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c diag_cluster.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c diag.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c diag_energy.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c diag_propensity.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c domain.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c dump.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c dump_image.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c dump_text.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c error.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c finish.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c groups.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c image.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c input.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c lattice.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c library.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c main.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c math_extra.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c memory.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c output.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c pair.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c pair_lj_cut.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c potential.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c random_mars.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c random_park.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c read_sites.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c region_block.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c region.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c set.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c shell.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c solve.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c solve_group.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c solve_linear.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c solve_tree.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c spparks.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c timer.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c universe.cpp↪→

mpiCC -O -DSPPARKS_GZIP -I/usr/sw-mpp/mpi2/include

-host -fpermissive -c variable.cpp↪→
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mpiCC -O -hybrid -L/usr/sw-mpp -L/lib
-I/usr/sw-mpp/mpi2/include app.o
app_lattice.o app_vacancy.o cluster.o
comm_lattice.o create_box.o create_sites.o
diag_array.o diag_cluster.o diag.o diag_energy.o
diag_propensity.o domain.o dump.o dump_image.o
dump_text.o error.o finish.o groups.o image.o
input.o lattice.o library.o main.o math_extra.o
memory.o output.o pair.o pair_lj_cut.o
potential.o random_mars.o random_park.o
read_sites.o region_block.o region.o set.o
shell.o solve.o solve_group.o solve_linear.o
solve_tree.o spparks.o timer.o universe.o
variable.o slave.o -o ../test_name

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

text data bss

dec hex filename↪→

5205254 2740952
217960 8164166
7c9346 ../test_name

↪→

↪→

$ cd ./correct/
$ ./test.sh -I test_name
waiting for dispatch. . . . . .
dispatching. . . . . .
Job <45767573> has been submitted to queue

<q_sw_share>.↪→


	Abstract
	1 Introduction
	2 Background
	2.1 Atomistic Kinetic Monte Carlo Method
	2.2 Sunway TaihuLight and SW26010 Many-Core Processor
	2.3 Parallel AKMC Implementation
	2.4 Related Work and Challenges of Parallel OpenKMC

	3 Optimization
	3.1 Group Reaction Strategy
	3.2 Cache Optimization Strategy
	3.3 Communication Optimization Strategies
	3.4 Transcription-Translation-Transmission Algorithm
	3.5 Vectorization

	4 Evaluation
	4.1 Correctness Validation
	4.2 Single Node Evaluation
	4.3 Scalability
	4.4 Visualization

	5 Conclusion
	Acknowledgments
	References

