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Abstract—Molecular dynamics is an extensively utilized com-
putational tool for solids, liquids and molecules simulation.
Currently, much research on molecular dynamics simulation
focuses on simplifying forces or parallelizing tasks to reduce the
overheads of forces computation. However, the molecular dynam-
ics simulation still remains challenging since the communication
and neighbor list construction are time-consuming in the existing
algorithm. In this paper, we propose a swMD optimization
strategy including a new communication mode called ghost
communication to reduce superfluous communication overheads
and an innovative neighbor list algorithm to improve the con-
struction efficiency of it. Moreover, we accelerate computation by
utilizing many-core resources on Sunway Taihulight and present
an auto-tuning Producer-Consumer pairing algorithm to make
neighbor list construction happen in fast register communication.
Compared to traditional methods, swMD optimization strategy
obtains a maximal 82.2% and an average of 79.4% performance
improvement. We also evaluate the scalability up to 266,240 cores
and the results demonstrate the high efficiency of swMD opti-
mization strategy on communication, computation and neighbor
list construction respectively.

Index Terms—Ghost communication, Molecular dynamics,
Neighbor list, Register communication, Sunway architecture

I. INTRODUCTION

Molecular simulation techniques including molecular dy-

namics (MD) and Monte Carlo (MC) methods are widely

utilized to study the molecular system in different fields

[21], [29]. Since the limitation of hardware and computing

techniques, no more than a few thousand particles are enabled

in molecular simulation over nanosecond time in the past. Cur-

rently, advanced computing techniques and high-performance

supercomputers have provided essentials for large-scale sim-

ulation and up to millisecond time scales on clusters [12].

Conventionally, the MD algorithm mainly includes two basic

steps: computation of the intermolecular forces and establish-

ment of neighbor lists for all particles [21].

In the physical system, the potential energy of particles is

often described as a sum of N-body interactions for all particle

pairs [29]. Generally, the interaction among particles will

decrease rapidly as the distance increases [30], and a cutoff
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distance rcut is introduced in molecular dynamics simulation.

The interaction that actually works between particle pairs

are defined as short-range forces within the cutoff distance.

Based on the above theory, a common choice of forces

computation is to compute the total potential energy for a

certain particle utilizing its newest neighbors. When simulated

on modern supercomputers, all particles data are distributed

on different processes, and a few neighbors of the boundary

particles are not involved in local process. Thus, it is necessary

to exchange particles with neighboring processes. However,

since the simulation performance will be limited greatly by

the massive inter-process communication, it is necessary to

reduce the redundant communication in large-scale molecular

dynamics simulation.

When essential particle data are gathered to local process,

the following step is to construct neighbor lists [28]. A central

particle refers to the particle which is constructing its own

neighbor list. Since the interactions beyond rcut are neglected,

the neighbors for a central particle i will produce a sphere

space, where i and rcut are center and radius respectively

[30]. Currently the neighbor lists are built by two traditional

algorithms: Verlet table algorithm [25] and cell linked list

algorithm [18]. However, the expensive distance computation

in these algorithms dominates the overall neighbor list con-

struction time, making the performance of molecular dynamics

simulation far from satisfactory.

To reduce the communication overheads, we propose a

new communication mode called ghost communication to

replace conventional total-exchange communication. Ghost

communication analyzes the data dependencies, divides the

local particle data into fine-grained sectors and transfers them

instead of the whole local data to reduce the communication

redundancy. We further accelerate computation part by utiliz-

ing many-core architectures, and the experimental result shows

that communication time is reduced a lot.

As for neighbor lists construction, fast neighbor list algo-

rithm is designed to remove redundant distance calculation

by adopting bitwise operations and subtractions. On modern

processors, the bitwise operations and subtractions are per-

formed much faster than the multiplications and square root

operations [3], [8]. The periodic boundary check is also taken

into account in fast neighbor list algorithm. Moreover, the
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storage requirements are released a lot in this way and more

particle pairs could be loaded to CPEs on Sunway architecture.

In order to fully use many-core resources, we further

accelerate the computation and neighbor list construction on

Sunway Taihulight. Based on the fast neighbor list algorithm

and the pairing method [26], we achieve an auto-tuning

Producer-Consumer pairing algorithm, where the two stages

of the algorithm are held in the paired Producer and Con-

sumer respectively. By handling the result produced by first

stage immediately through register communication, Producer-

Consumer pairing algorithm reduces the synchronization time

caused by load imbalance notably and avoids frequent global

memory accesses.

All optimization methods are packed into swMD strategies

and it was evaluated on Sunway processors. For strong scala-

bility, 131,072 particles are simulated on up to 266,240 cores

to evaluate the performance of swMD and for weak scalability,

2,048 particles are simulated per core group. Compared with

the traditional molecular dynamics simulation algorithm, our

basic optimization strategies employing ghost communica-

tion, many-core computation and fast neighbor list algorithm

achieve a 73.3% performance improvement on average. When

Producer-Consumer pairing algorithm is utilized by register

communication, our swMD method outperforms the traditional

one by as much as 79.4% and a maximal improvement 82.2%.

The major contributions in this paper includes:

• The ghost communication mode is designed by dividing

data into fine-grained sectors to eliminate the communi-

cation redundancy and improve the utilization of transfer

data.

• A fast neighbor list algorithm is proposed to accelerate

the neighbor lists construction by adopting two subtrac-

tions and several bitwise operations.

• Based on the SW26010 architecture, we achieve a signif-

icant acceleration for the computation and neighbor lists

construction by employing many-core resources.

• An auto-tuning Producer-Consumer pairing algorithm

is designed to further reduce the synchronization time

caused by load imbalance and to avoid frequent global

memory accesses through fast register communication.

II. BACKGROUND

Since silicon material is crucial to information industries

and has diverse potentials in thin-film transistors, photovoltaic

resistors and biomedical sensors, it is commonly selected as

candidate material for molecular dynamics simulation [5].

Taking into account the physical properties of crystalline

silicon, the Tersoff III potential [24] is employed to calculate

thermodynamic and dynamic processes in this paper.

A. Communication for Molecular Dynamics Simulation

Large-scale molecular dynamics simulation constitutes a

popular applications in various fields. However, as the sim-

ulation size increases, the particle data are distributed on

different processes. In order to update the particle information

on local process, the communication between processes is

inevitable. Considering the role of short-range forces, the

local process only needs to communicate with neighboring

processes. Conventionally, the local process is treated as

the center, and the traditional total-exchange communication

occurs when the particles in local process needs to update.

Similarly, the particles on local process are also transferred

to other neighboring processes without precise judgements for

particle updates on them.

B. Neighbor List Algorithms

The traditional neighbor list algorithms primarily include

Verlet table algorithm and cell linked algorithm.

The basic idea of Verlet table algorithm is to build and

maintain a list of neighbors for each particle. Firstly, we

introduce an extension distance rskin [30]. Since a sphere

space is created by rcut, rskin will continue to produce a skin

surrounding the sphere. For a central particle i, another particle

j is counted into neighbor list when the distance rij between

them is less than rcut + rskin [30]. In this way, the neighbor

list contains less redundant particles, however, it is built for

every particle and the construction of it scales dramatically

with increasing simulation size [25].

In cell linked list algorithm, the simulation domain is

divided into several cells, and the cells edge is generally no

less than rcut. The procedure of neighbor list construction is

efficient since the atom indices are organized as a linked list.

For a central particle i in cell m, all surrounding cells (9 cells

for 2D simulation and 27 cells for 3D simulation) are required

to be checked [30]. Compared to Verlet table algorithm, the

cell linked list algorithm is more suitable for a relatively large

simulation system [30].

The traditional algorithms have been intensively studied and

applied in many molecular dynamics simulations [13]. How-

ever, these algorithms universally use the Euclidean Metric [4]

to compute the interatomic distance. Apparently, the distance

calculation involves some time-consuming multiplications and

square root operations, and the cost dominates most of the time

for neighbor list construction.

Recently, significant research has been devoted to devel-

oping a variety of molecular dynamics simulation packages,

including GROMACS [11], LAMMPS [19], [23] and NAMD

[15], [22]. A combined solution for Verlet table algorithm and

cell linked list algorithm is utilized in these packages. The cell

length is determined according to the shortest cutoff radius,

rcut, and the search area is restricted in the largest cutoff

radius that is equal to rcut + rskin. Though redundant search

for neighbors is avoided, the distance judgements are still

computationally intensive and a mass of cores are used to get a

reasonable performance in the simulation of colloidal systems

[12]. Fen-Zi [9] or HALMD [7], [10] are exclusively designed

for GPUs and limited feature set is implemented in these

codes. HOOMD-blue [1], [2] is a more recent addition and

a rich feature set is provided for general-purpose molecular

dynamics simulations. However, the codes are designed for

NVIDIA GPUs exclusively [10]. These popular molecular

dynamics packages generally use a combination of Verlet table
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algorithm and cell linked list algorithm on serial or vector

machines [20]. Moreover, the neighbor lists are typically im-

plemented using a brute force distance check for particle pairs,

which compares the square of distance directly. Even though

the comparison for squares in the combined solution only

needs 3 additions, 3 subtractions and 4 multiplications, the

overhead is still hard to be ignored in large-scale simulation.

C. The SW26010 Many-Core Processor

The Sunway Taihulight supercomputer (125 Pflops peak

performance, composed of 40,960 processors) is mainly as-

sembled by SW26010 many-core processor [16]. Each pro-

cessor is made up of four core groups (CGs), and each CG

consists of 65 cores. A CG contains one management pro-

cessing element (MPE) and 64 Computing Processor Element

(CPEs). The computation on MPE could be accelerated by

CPEs, and they are organized as an 8 × 8 mesh [16]. The

MPE contains a 64 KB L1 cache and a unified 256 KB L2

cache. Each CPE contains a 16 KB L1 instruction cache and a

64 KB local store (user-controlled scratch pad memory, SPM).

The processor connects to others by a system interface.

The SW26010 processor is characterized by fast register

communication among the 8 × 8 CPEs. The latency of fast

register communication on CPEs is at most 11 cycles. Because

of the restriction of hardware and other conditions, the fast

register communication is only supported in the same column

or row among the CPE mesh [16], [26].

D. Challenges of Constructing Neighbor Lists on SW26010

Even though vast research has been performed on Sunway

architecture to fully leverage the hardware advantages of

SW26010 [6], [14], [27], it is still challenging to utilize these

characteristics adequately for constructing neighbor lists on it.

First, the fast neighbor list algorithm contains a large

quantity of bitwise operations to relieve the overheads brought

by traditional algorithms. However, the SW26010 processor

provides few bitwise vector instructions. Moreover, in register

communication, the CPE can not distinguish the data source

in Receive Buffer, and it is not guaranteed the sequence of

receiving data when multiple CPEs are sending to the same

one simultaneously. Furthermore, the proportion of Producer

and Consumer processors also needs determining exactly,

otherwise some CPEs are idle when loads are imbalanced

and the efficiency for constructing neighbor lists decreases

severely.

III. OPTIMIZATION

A. Ghost Communication for molecular dynamics simulation

The key point of ghost communication is to eliminate redun-

dant particle data transfers. Fig.1 presents the data transfers of

ghost communication. The particle data are divided into three

kinds of data sectors [17] which are calculated in advance on

all processes: Point Sectors, Edge Sectors and Surface Sectors.

sector 1

sector 2

sector 4

sector 3

sector 5

sector 6

sector 7

(a) Send Sectors

sector 1

sector 2

sector 4

sector 3

sector 5

sector 6

sector 7

(b) Recv Sectors

Fig. 1. The Send Sectors and Recv Sectors in ghost communication. The left
part displays the 26 Send Sectors of local process (outer balck hollow cube)
and the right part shows the local process (inner black solid cube) receives
26 sectors from neighboring processes.

a) Point Sectors: The particle data distributed on eight

vertex region are defined as Point Sectors. As shown in Fig.1,

the local simulation space is described as a outer black hollow

cube and an inner black solid cube respectively. The small dark

grey cube indicated with ”sector 1” is a Send Point Sector of

local process in Fig.1(a), and the sector in same position of

Fig.1(b) is a Recv Point Sector. Since every local simulation

space contains eight vertex regions, the total number of Point
Sectors is eight.

b) Edge Sectors: The particles in edge regions of local

process are aggregated into Edge Sectors in terms of the cutoff

distance. As shown in Fig.1, the three dull grey Edge Sectors
adjacent to the dark grey Point Sector are Send Sectors or

Recv Sectors respectively, and they are marked with sector 2,

sector 3 and sector 4. The local process contains 8 vertexes,

and 3 edges adjacent to a vertex. Since one edge is shared by

2 vertexes, there are 12 (8×3÷2) Send Edge Sectors or Recv
Edge Sectors in local process.

c) Surface Sectors: The light grey sectors marked with

sector 5, sector 6 and sector 7 are Surface Sectors in Fig.1.

Generally, the thickness of Surface Sectors are equal to the

cutoff distance. Since every 3 surface linked to a vertex and

every surface is shared by 4 vertexes, the local process contains

6 (8×3÷4) Send Surface Sectors and also receives 6 Surface
Sectors from surrounding processes.

Ghost communication removes the data dependence by

analyzing the effect ranges of cutoff distance, and then divides

local data into more fine-grained sectors to transfer instead

of transferring the whole data in local. According to our

experiment, ghost communication suits problems with lots

of particles on each cores. Detailed results can be found in

Sec.IV.

B. Fast Neighbor List Algorithm

In this section, we discuss the general fast neighbor list

algorithm that can improve the construction efficiency signif-

icantly.

Firstly, the storage requirements for particle position are

released since only an integer value of int type is utilized to

contain all data of three dimensions. For a central particle P0,

an int type T0 is used. Secondly, the highest 2 bits of T0 are

set to 0, and the remaining bits are equally divided into 3
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segments. For each segment, the highest bit is reserved and

also set to 0. The following 9 bits of each segment are used

to represent the coordinate value of each dimension for P0.

For a candidate neighbor particle P1, the int value is defined

as T1. Then the following formula is utilized in fast neighbor

list algorithm:

D0 = [(T0 |Mask0)− T1]&Mask1 (1)

Equation (1) involves 1 subtraction and 2 bitwise operations.

The cutoff radius is defined as R. Mask0 and Mask1 are

two integer constants. For Mask0, three reserved bits are set

to 1 and other bits are all set to 0. For Mask1, the lower

�log2(R + 1)� bits and reserved bits of each segment are set

to 0, and other bits of it are all set to 1. Using Equation (1),

we get the value D0. Then we exchange the positions of T0

and T1 in Equation (1), and D1 is generated. We will use D0

and D1 for further judgment.

a) Bitwise AND operation:

Result0 = D0&D1 (2)

A bitwise AND operation are performed between D0 and

D1 using Equation (2), and we obtain Result0. The algorithm

continues if Result0 is zero. Otherwise, the algorithm returns

the result that P1 is not a neighbor of P0.

b) Left Shift and bitwise AND operations:

Result1 = (D0 � 1)&D1 (3)

It is not guaranteed that P1 is the neighbor of P0 when

Result0 is equal to 0. We further perform left shift and bitwise

AND operations on D0, as shown in Equation (3). If the result

Result1 is equal to zero, the algorithm continues.

c) Right Shift and bitwise AND operations:

Result2 = (D0 � 1)&D1 (4)

Similarly, right shift and bitwise AND operations are carried

out on D0 in Equation (4). P1 is a neighbor of P0 when

Result2 is zero. Otherwise, P1 is not a neighbor of P0. We can

notice that P1 is a neighbor of P0 only if Result0, Result1
and Result2 are all equal to zero.

However, the distance between P0 and P1 can still be

larger than the cutoff distance even if Result0, Result1
and Result2 are all equal to zero. Thus, we only obtain

an approximate neighbor list by now. If high precision is

required in simulation, the particles will be further checked by

Euclidean distance calculation. The overhead for the precise

neighbor list construction is very low since the approximate

neighbor list contains few redundant neighbors.

C. Many-core Acceleration on Sunway architecture

Since we adopt the ghost communication, abundant com-

munication redundancy is eliminated. However, the ghost

region computation inevitably introduces new overheads. The

major task for ghost region computation is to determine the

destination process for every particle in local according to the

cutoff distance, and all particles are checked in sequence on

MPE. When the essential particles are fetched from surround-

ing processors by ghost communication, they need to start

constructing neighbor lists in sequence. It is a serial process on

each processor and abundant many-core resources are wasted.

In order to further tap the potential of CPEs, we accelerate

the computation part and construction of fast neighbor lists

on many-core processors.

The key point of many-core acceleration is to divide the

simulation task on local processor into fine-grained subtasks

and assign them on different CPEs. It is worth noting that

data dependences should be eliminated among subtasks. From

these considerations, we distribute ghost region and interaction

forces computation from MPE to available CPEs, and then ev-

ery CPE constructs neighbor lists for a part of central particles

separately. Apparently, the many-core resource provides more

computation ability to the simulation task and the experimental

results also prove a significant performance improvement in

Sec.IV.

However, though fast neighbor list algorithm accelerated

by CPEs makes a dramatical breakthough on performance,

new problems caused by employing many-core resources arise:

load imbalance and frequent memory accesses. When tasks

are divided unequally on CPEs, the whole computation time

of processor is determined by the CPE whose task burden

is the heaviest. Thus it is usually the case that some CPEs

are busy for computation while others are idle. In addition,

when precise neighbor judgement is required, every CPE

needs memory accesses to MPE for writing information to

neighbor list once a new neighbor particle is determined by

computation. This interrupt also makes cache accesses discrete

inevitably and the potential benefits of spatial locality can not

be obtained easily.

D. Auto-tuning Producer-Consumer Pairing Algorithm

In this subsection, we propose an auto-tuning Producer-

Consumer pairing algorithm based on pairing method [26]

to use fast register communication for further improving the

performance of parallel fast neighbor list algorithm.

Generally, the molecular dynamics simulation will perform

thousands of iterations for a given simulation case, and the

Producer-Consumer pairing algorithm contains an auto-tuning

mechanism to adjust the proportion for Producers and Con-

sumers dynamically according to the runtime every iteration.

In this case, Producers and Consumers are defined as the

left 32 cores and right 32 cores in the whole CPE mesh

respectively. But note that arbitary available proportion is

allowed for Producers and Consumers since the auto-tuning

mechanism exists.

Fig.2 shows the producer-consumer pairing algorithm on

SW26010 processor [26]. Each Producer contains Cache c,

Cache n and Buffer 1. The former one and the middle one

are used to cache and reuse central particle data and candidate

particle data respectively, and the latter one is to store the three

results generated by fast neighbor list algorithm for further

judgements. Similarly, each Consumer also contains Cache c,

Cache n and Buffer 2. The former one and the middle one
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Compute Unit

Buffer_1
Cache_c
Cache_n

8 
rows

4 columns

Compute Unit

Buffer_1
Cache_c

1p. Load data to producer cores

Cache_n

Producer Consumer

1c. Load data from producer cores

5p. Send Cache_n from Producer to Consumer

6c. Send status from Consumer to Producer 

4c. Write to Neighbor List

3p. Bitwise operations
4p. Result judgement

2c. Accurate distance calculation
3c. Result judgement

2p. Send Cache_c to consumer cores

5c. End judgement

Compute Unit

Buffer_1
Cache_c
Cache_n

Compute Unit

Buffer_1
Cache_c
Cache_n

Compute Unit

Buffer_2
Cache_c
Cache_n

Compute Unit

Buffer_2
Cache_c
Cache_n

Compute Unit

Buffer_2
Cache_c
Cache_n

Compute Unit

Buffer_2
Cache_c
Cache_n

4 columns

Fig. 2. The Auto-tuning Producer-Consumer Pairing Algorithm on SW26010
Processor.

Start

1p: Load central particle data to Cache_c;

2p: Send Cache_c or Cache_n to consumer cores 

4p: Candidate particle?

1p: Load candidate particle data to Cache_n;

3p: Stage 1 of Fast Neighbor Lists algorithm;

1c: Receive particle data from producer cores to 
Cache_c or Cache_n of consumer cores;

2c: Stage 2 of Fast Neighbor Lists algorithm;

3c: Neighbor particle?

4c: Write data to neighbor lists;

6c. Send status from Consumer to Producer 

End

5c: End of particle queue?

Y N
Y

N

N

Y
Producer-Consumer Pair

Fig. 3. The neighbor list construction process for a central particle on
SW26010 processor.

are used to cache and reuse the particle data received from

Producer by register communication, and the latter one is to

store the result produced by precise neighbor list computation.

Each Producer is matched with one Consumer, thus the

Cache c and Cache n on one Producer are exactly needed

by paired Consumer. Producers will send the corresponding

particle data to their paired Consumers by fast Row register

communication to fulfill the precise neighbor list computation.

These sending operations are marked with the ”1c” and ”5p”

in Fig.2. As Fig.2 displays, the steps performed on Producers

and Consumers are attached with ”p” and ”c” on step number

respectively.

Next we introduce the fast neighbor list construction process

for a central particle utilizing auto-tuning Producer-Consumer

pairing algorithm, as exhibited in Fig.3. The numbers 1p to

4p and 1c to 6c in Fig.3 are the corresponding operations in

Fig.2.

a) Step 1: The Producers fetch the current central par-

ticle data from MPE to Cache c, which is indicated by 1p

operation in Fig.3. The Cache c need transferring to the

corresponding caches in paired Consumers only when this

central particle is a new one to construct neighbor list.

b) Step 2: The Producers continue to load candidate

particle data to Cache n. In the whole neighbor list construc-

tion for a certain central particle, a new candidate particle

is transferred to the Cache n every time while the central

particle information only caches one time.

c) Step 3: Once a new candidate particle is cached

in Producers, the fast neighbor list algorithm is performed

on Cache c and Cache n. Then three results are generated

as mentioned in Sec.III-B, and they are stored in Buffer 1
waiting for further judgements.

d) Step 4: For Producers, the candidate particle data will

be sent to paired Consumers directly and then empty Cache n
and replenish it with next candidate particle if three results

are all equal to 0. Otherwise, the Producers load the next

candidate particle immediately which is corresponding to 4p in

Fig.3. When the judgements for three results have completed,

a whole procedure for Producers ends and these steps will loop

till all candidate particle have been checked. At that time, both

Cache c and Cache n will be emptied and a new round of

neighbor list construction for next central particle starts.

For Consumers, the Cache n is filled with the data re-

ceiving from Producers and then a precise neighbor list

computation is carried out on Cache c and Cache n. The

result is stored in Buffer 2 on Consumers. When the result

proves a neighbor, the Consumer will record it and write to

neighbor lists in idle time and then continues to 5c in Fig.3,

or it will judge whether the candidate particle is an end of

queue or not directly. If the answer is ”No”, consumers empty

the Cache n, receive a new candidate particle and loop these

steps. While, if the answer is ”Yes”, the Consumer will empty

Cache c and Cache n, and send status information to paired

Producer.

In fact, the Producers and Consumers will work together

and run separately except 1p and 6c operations in Fig.3.

Through decoupling the computation process of neighbor list

and dividing different functions on CPEs precisely, all CPEs

work with its own designated task. In addition, since all

precise computation for neighbor list are accomplished on

Consumers, Producers tap the potential from spatial locality

and avoid frequent memory accesses. Based on Producer-

Consumer pairing algorithm, we achieve to construct neighbor

list more efficiently on SW26010 processors.

IV. EXPERIMENTAL RESULTS

To compare our proposed swMD optimization strategy with

traditional algorithm, we evaluate them in our application that

is implemented as the silicon atoms model on Sunway Taihu-

light supercomputer. Taking into account the heat and stress

changes of silicon, the Tersoff III potential [24] is utilized for

energies calculation. The codes are compiled by SWCC Com-

pilers (Version 5.421-sw-500), which is a customized compiler
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Fig. 4. Total runtime comparisons for utilizing various optimization strategies.

for Sunway architecture. Then the performance for progressive

optimizations, scalability, and performance for single module

are all evaluated. For convenience, the comm. is short for

communication; the NBList is short for traditional neighbor

list; the MC acceleration means computation and fast neighbor

list construction optimized with many-core acceleration; PC

algorithm refers to auto-tuning Producer-Consumer pairing

algorithm applied on the swMD version of MC acceleration.

A. Performance Comparisons for Various Optimizations

Firstly, we evaluate the optimization effects when vari-

ous optimization strategies are applied on the simulation in

sequence. We test the molecular dynamics simulation with

131,072 particles using different number of processors as

shown in Fig.4. The benchmark utilizes traditional neighbor

list algorithm and communication mode. Ghost communica-

tion improves performance significantly on benchmark al-

gorithm by eliminating redundant data transfers. Then Fast

NBList, MC acceleration and PC algorithm are employed

successively.

It can be seen evidently that the performance improves

gradually when these optimization algorithms are used. The

PC algorithm obtains a 99.1% performance improvement than

traditional algorithm on average, and the precise investigations

are illustrated in Sec.IV-D.

Compared with the traditional algorithm, our basic opti-

mization strategies by employing ghost communication and

MC acceleration achieve a 38.6% performance improvement

on average. The swMD method utilizing PC algorithm out-

performs the traditional one by as much as 52.0% and a

maximal improvement 57.8%. Moreover, the total runtime

decreases with the increase of processors, which indicates a

good scalability for the swMD optimization strategy.

B. Strong Scaling

For strong scaling evaluation, we fix the simulation size

and use the same 131,072 particles as Sec.IV-A which are

random initialized. As mentioned above, the significant effects

of different optimization algorithms on total runtime has been

Fig. 5. Performance comparisons: Strong scaling

exhibited in Fig.4. For further discussion on strong scaling,

we compare the ideal speedup with swMD rigorously in

Fig.5. The Producer CPEs are responsible for F-NL part

and the Consumer CPEs are in charge of precise neighbor

computation.

We can see that the swMD optimization strategy has a

good strong scalability. Parallel efficiency for swMD gradually

decreases as cores increase, which is mainly caused by the

communication overheads. Scaling from 520 cores to 266,240

cores, a 246.6x speedup (60.9% parallel efficiency) is obtained

for swMD optimization strategy.

In our investigations, when computing resources scales,

the superior performance of traditional comm is in contrast

to our expectant wisdom of using ghost comm with PC

algorithm to achieve the best performance. The main reason

is that the benefits brought about by only exchanging essential

sectors are counteracted by computing the exchanging sectors

when the simulation task is not heavy on each processor in

strong scaling. Moreover, the parallel efficiencies of swMD

are inferior to the traditional algorithm when 33,280 or more

cores are used. The main reason is that the baseline of swMD

exploits the performance of swMD optimization with sufficient

computation task. With the increase of cores, the computation

workload on each processor is gradually reduced in strong

scaling. Therefore, the parallel efficiencies decrease with a

comparison to strong baseline.

C. Weak Scaling

Fig.6 shows the weak scaling test for our swMD, and

parallel efficiency value is specified for each bar. We compare

the performance of traditional method and swMD respectively.

As we increase the number of cores from 520 (including

8 MPEs and 512 CPEs), the problem size increases from

1.6 × 104 particles to 8.4 × 106 particles. Our swMD scales

up to 266,240 cores with total 8.4× 106 particles by a 86.8%

parallel efficiency.

We can see that the communication time and computation

time dominate nearly all overheads in the process of simula-

tion, and the proportions of them remain almost constant on

different number of cores. Since the communication contention
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Fig. 6. Performance comparisons: Weak scaling. Parallel efficiency value is
specified for each bar.
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Fig. 7. Time comparisons of communication module.

exists, the communication time is a little higher in traditional

algorithm when more cores are used.

Both the computation time and communication time de-

creases obviously when employing swMD strategy. This is

because a part of time is used to compute sectors for data

exchanging thus the number of particles for communication

reduces significantly.

As Fig.6 shows, the neighbor lists time decrease sharply

and it only takes up a small proportion in the simulation when

swMD is employed, which indicates that PC algorithm could

construct it efficiently. Overall, our swMD method exhibits a

good strong and weak scalability.

D. Performance Comparisons for Single Module

Since the communication, computation and neighbor list

construction account for different proportions in the whole

simulation, the optimization effect on a single module is not

distinct. Therefore, we exhibit the effect of our proposed

swMD optimization on every single module in this subsec-

tion. The configurations are same with the strong scaling

experiments, and each set of bars in Fig.7 to Fig.9 displays

the simulation effect before or after the swMD optimization

clearly.
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Fig. 8. Time comparisons of computation module.

0

5

10

15

20

25

30

35

40

520 4,160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

33,280 112,320 266,240

Si
m

ul
at

io
n 

Ti
m

e 
(s

)

Cores (MPEs + CPEs)

Conventional Comm. + NBList
Ghost Comm. + PC algorithm

Fig. 9. Time comparisons of NBList module.

Fig.7 presents the communication time comparisons for

the traditional algorithm and the swMD. Compared to the

traditional algorithm, the swMD obtains an average speedup

of 4.44x and this proves that our swMD optimization reduces

communication time greatly. Moreover, nearly all benefits on

decreasing communication time are introduced by ghost com-

munication method, which is important in swMD optimization.

Fig.8 presents the computation time comparisons for differ-

ent optimization methods. In previous investigations, because

the swapping sectors need computing before communication,

the corresponding computation time increases 56.8% on av-

erage when ghost communication mode is utilized on MPE.

However, we can see that when many-core acceleration is em-

ployed, a large deal of computation time is saved and it has a

66.4% average performance improvement, which demonstrates

the swMD could improve the computation efficiency definitely.

We also present the time comparisons results for neighbor

list module in Fig.9. We increase the number of cores from

520 to 266,240 and keep the total number of particles fixed

on 131,072. The result exhibits that swMD is efficient in

improving the performance of neighbor lists construction.

In addition, PC algorithm taht utilizes CPEs on SW26010

contributes a lot in swMD for neighbor list acceleration and
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the optimization obtains a 5.13x speedup on average. When

520 cores are used, the computation workload is sufficient and

a maximal 6.17x speedup is obtained.

V. CONCLUSION

Molecular dynamics simulation is crucially important in

many scientific research. In this work, we propose a ghost

communication method to eliminate redundant data transfers

and an innovative algorithm to accelerate neighbor list con-

struction in molecular dynamics simulation. These optimiza-

tions are general and can be applied on other architectures.

Then, we utilize the many-core resources to optimize the

computation and fast neighbor list algorithm specially on

SW26010 processor. Furthermore, an auto-tuning Producer-

Consumer pairing algorithm is presented to construct neighbor

lists by fast register communication. The experimental results

shows that our approach largely outperforms the traditional

algorithms and has a good strong and weak scalability on

SW26010 processors.

As future work, we plan to optimize the communication

among CGs in SW26010 processor to further exploit the intra-

node performance. We believed that our proposed optimization

strategies could introduce insightful experience to algorithm

design on other architectures.
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