
An Accurate and Efficient Large-Scale
Regression Method Through Best

Friend Clustering
Kun Li , Liang Yuan ,Member, IEEE, Yunquan Zhang , Senior Member, IEEE, and Gongwei Chen

Abstract—As the data size in Machine Learning fields grows exponentially, it is inevitable to accelerate the computation by utilizing the

ever-growing large number of available cores provided by high-performance computing hardware. However, existing parallel methods

for clustering or regression often suffer from problems of low accuracy, slow convergence, and complex hyperparameter-tuning.

Furthermore, the parallel efficiency is usually difficult to improve while striking a balance between preserving model properties and

partitioning computing workloads on distributed systems. In this article, we propose a novel and simple data structure capturing the

most important information among data samples. It has several advantageous properties supporting a hierarchical clustering strategy

that contains well-defined metrics for determining optimal hierarchy, balanced partition for maintaining the clustering property, and

efficient parallelization for accelerating computation phases. Then we combine the clustering with regression techniques as a parallel

library and utilize a hybrid structure of data and model parallelism to make predictions. Experiments illustrate that our library obtains

remarkable performance on convergence, accuracy, and scalability.

Index Terms—Distributed machine learning, scalable algorithm, large-scale clustering, parallel regression

Ç

1 INTRODUCTION

MACHINE Learning (ML) has become one of the crucial
mainstays of information technology over past deca-

des, albeit commonly hidden, part of modern life perva-
sively. As technologies based on machine learning like
artificial intelligence (AI) rise prominently, the data size
that researchers have to study with is also growing expo-
nentially [12], [31]. This makes training time for models
range from hours to weeks, which poses intense pressures
across computation, networking, and storage. Thus, acceler-
ating model training is an important research challenge
within the machine learning field.

Today, High Performance Computing (HPC) and paral-
lel techniques catalyze the modern revolution in machine
learning. More and more companies are turning to HPC as
the solution for ML-based productivity and AI-enabled
innovation, such as Google Cloud TPU, Amazon AWS
AIHPC, and Microsoft Azure. Within the field of machine
learning, clustering and regression are two fundamental
and crucial techniques, which are distinguished as the rep-
resentative unsupervised and supervised learning meth-
ods [14], [28].

Clustering methods divide data into different groups by
data attributes. Various types of clustering are proposed for
providing a range of different uses [25], [30], [37], [40], [46].
Basically, they can be distinguished as hierarchical (nested)
versus partitional (unnested) methods, where Agglomera-
tive Hierarchical Clustering (AHC) and K-Means are two
fundamental methods that are widely used [43], [53]. AHC
and its variants make a set of nested clusters organized as a
hierarchical tree [36]. K-Means is simple and efficient on a
variety of problems [32], [33]. Recently, Graph Clustering
(GC) such as Minimum Spanning Tree clustering (MSTC)
also stands prominently for detecting clusters with irregular
boundaries by graph theory. It uses Prim’s algorithm or
Kruskal’s algorithm to construct a minimum spanning
tree (MST) first, sorts edges to remove inconsistent ones for
connected components, and repeats until a threshold
loops [21], [27].

Regression involves intensive computations in the model
training phase inherently. A standard distributed method
for regression is to map the computation on p-processor sys-
tem evenly and then perform a global reduction regu-
larly [39]. Generally, these distributed regression methods
work poorly in scaling cases due to busy synchronization

� Kun Li is with the State Key Laboratory of Computer Architecture, Insti-
tute of Computing Technology, Chinese Academy of Sciences (CAS), Bei-
jing 100190, China, and also with the School of Computer Science and
Technology, University of Chinese Academy of Sciences (UCAS), Beijing
100190, China. E-mail: likungw@gmail.com.

� Liang Yuan and Yunquan Zhang are with the State Key Laboratory of
Computer Architecture, Institute of Computing Technology, Chinese
Academy of Sciences (CAS), Beijing 100190, China. E-mail: {yuanliang,
zyq}@ict.ac.cn.

� Gongwei Chen is with the Key Laboratory of Intelligent Information Proc-
essing, Institute of Computing Technology, Chinese Academy of Sciences
(CAS), Beijing 100190, China, and also with the School of Computer Sci-
ence and Technology, University of Chinese Academy of Sciences (UCAS),
Beijing 100190, China. E-mail: gongwei.chen@vipl.ict.ac.cn.

Manuscript received 6 July 2021; revised 31 Oct. 2021; accepted 2 Dec. 2021.
Date of publication 13 Dec. 2021; date of current version 23 May 2022.
This work was supported in part by the National Natural Science Foundation
of China under Grants 61972376, 62072431, and 62032023, and in part by
the Science Foundation of Beijing under Grant L182053.
(Corresponding author: Liang Yuan.)
Recommended for acceptance by A.J. Pe~na, M. Si and J. Zhai.
Digital Object Identifier no. 10.1109/TPDS.2021.3134336

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022 3129

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1013-1325
https://orcid.org/0000-0002-1013-1325
https://orcid.org/0000-0002-1013-1325
https://orcid.org/0000-0002-1013-1325
https://orcid.org/0000-0002-1013-1325
https://orcid.org/ 0000-0003-3406-2907
https://orcid.org/ 0000-0003-3406-2907
https://orcid.org/ 0000-0003-3406-2907
https://orcid.org/ 0000-0003-3406-2907
https://orcid.org/ 0000-0003-3406-2907
https://orcid.org/0000-0001-7520-9640
https://orcid.org/0000-0001-7520-9640
https://orcid.org/0000-0001-7520-9640
https://orcid.org/0000-0001-7520-9640
https://orcid.org/0000-0001-7520-9640
https://orcid.org/0000-0002-0634-6075
https://orcid.org/0000-0002-0634-6075
https://orcid.org/0000-0002-0634-6075
https://orcid.org/0000-0002-0634-6075
https://orcid.org/0000-0002-0634-6075
mailto:likungw@gmail.com
mailto:yuanliang@ict.ac.cn
mailto:zyq@ict.ac.cn
mailto:gongwei.chen@vipl.ict.ac.cn

sweeps. Well-known approaches use Divide-and-Conquer
(DC) algorithm to optimize the parallel process. The basic
idea of Divide-and-Conquer Regression (DCR) is to divide
the data into p similar parts, generate p similar training
models, and average pmodels for a final solution. The mem-
ory and computation overhead is reduced by DCR, such as
DCKRR on Kernel Ridge Regression (KRR) and DCSVM on
Support Vector Regression (SVR) [24], [51]. However, the
accuracy is not guaranteed in various cases [49].

More recent work is the parallel optimization for KRR:
Balanced KRR v2 (BKRR2), which is the latest version by
researchers [48]. BKRR utilizes K-Means to partition n sam-
ples to p clusters, where p is the number of processes. Each
cluster contains n=p dispatched samples, and then p models
are generated correspondingly. To guarantee the load-bal-
ance, no additional sample will be added to it if the cluster-
ing center contains n=p dispatched samples by K-Means.
Regression is then performed on each distributed models,
and results are gathered for an average. Based on the BKRR,
BKRR2 is proposed to improve the accuracy by training
models independently without a global reduction. Although
BKRR2 proves that it could achieve higher accuracy and effi-
ciency than the current fastest method [48], [49], various
problems are still not clearly addressed.

First, the accuracy and the convergence for K-Means are
not always satisfactory on large dataset. It needs at least
thousands of times for convergence in the experiments of
BKRR2. Since the clustering center is changing dynamically,
the volume of transferred data is also massive in each itera-
tion. BKRR2 also avoids confronting this problem directly
and implements K-Means only with a process. Second, since
K is a hyperparameter to assign #clusters in K-Means, its
value is simply set to #processes in BKRR2 and that is not
robust. The clustering results deviate from the real distribu-
tion drastically as #processes change, which leads to a poor
accuracy in many cases. Even worse, the training time
increases with more generated clusters assigned by increas-
ing processes, which is essentially not adequate for large-
scale training. Furthermore, BKRR2 achieves load-balance
at the cost of accuracy. In the process of clustering, samples
are traversed and dispatched to their nearest cluster center.
However, a more relevant sample to some ”full” cluster
cannot be added to it for its late traversal order by the
design of BKRR2.

In this paper, we design an efficient parallel regression
library to address the pending problems in existing meth-
ods. First, we propose a new graph structure called Best
Friend Graph to capture the most important information
among the data samples. Based on the proposed structure, a
novel clustering method, Best Friend Clustering (BFC), is
presented. It reduces computation over AHC approaches,
improves accuracy to K-Means methods, and enhances scal-
ability than MST-based algorithms. Then we dig out the
inherent properties of the graph structure and design a
well-defined metric to determine the optimal aggregation.

Next, a balanced partition algorithm for data parallelism
is proposed based on the idea of backtracking, which could
reflect more characters on the real distribution. Instead of
deleting edges by a non-increasing order serially in MST-
based work [7], [21], we gather samples in the same group
by swapping their pointers simply. The larger clusters are

then split by backtracking and smaller clusters are merged
from the optimal hierarchy to obtain total n=p samples in
each process. Thus, the storage for edges is released, and
the procedure could be parallelized easily.

Furthermore, Best Friend Clustering is applied to parallel
regression. Although the above-proposed methods can be
used separately, we combine them with multiple regression
techniques as a complete parallel regression library. Each
process generates single or multiple training models inde-
pendently according to the clustering results. For each test
sample, it selects the best one from these models in the pre-
diction phase. Thus, model parallelism is achieved effi-
ciently in each process. To be as general as possible, our
library has no specific limits on the dimensionality of the
dataset and the format of the distance measure.

At last, we present an experimental study on our Best
Friend Clustering with three different clustering methods.
Then the accuracy and scalability are analyzed for our
regression library with state-of-the-art work. The encourag-
ing performance demonstrates the distinct superiority of
the proposed methods on distributed systems.

The main contributions in this paper include:

� A novel Best Friend Clustering method is proposed
for large-scale clustering, which is accurate, fast, and
parameter-free.

� Theoretical properties of the proposed clustering
method are studied thoroughly, and we design a
strategy to decide the optimal clustering aggregation
through a well-defined metric based on analytical
properties.

� We optimize the clustering on distributed systems,
apply it to parallel regression, and propose a partition
algorithm for load-balancing and spatial locality.

� By utilizing a hybrid structure of data and model
parallelism, we combine the proposed methods with
regression techniques as a parallel library. It shows a
remarkable performance on convergence, accuracy,
and scalability.

2 BACKGROUND

2.1 Regression Techniques

Regression is a supervised machine learning technique that
is utilized to investigate the relationship between one or
more predictors and response variables for a best-fit curve.
The obtained curve can be then employed for making pre-
dictions on new data points. Basically, there are various
algorithms that are utilized to build a regression model, and
in our paper, three extensively-used techniques are molded
out and implemented in our library.

2.1.1 Linear Regression

Linear regression is a widely-used method to find the linear
relationship between the dependent variable and one or
more independent variables by employing a straight line.
Given a d-dimensional training sample xi and the corre-
sponding measured regressand yi, the objective in training
phase is to find a w such that yi � wT � xi. This can be for-
mulated as a least squares problem in Equation (1) to find
the optimal line by minimizing the sum of the residuals.

3130 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

Then for a test sample x�, we can utilize the training model
to predict the regressand by y� ¼ wT � x�, and evaluate the
accuracy with Mean Squared Error (MSE) method.

wopt ¼ argmin
1

2

Xn
i

ðyi �wTxiÞ2: (1)

2.1.2 Kernel Ridge Regression

To avoid overfitting and solve some ill-posed problems, L2
regularization with a positive parameter � is used in Equa-
tion (2), which is called ridge regression.

wopt ¼ argmin
1

2

Xn
i

ðyi �wTxiÞ2 þ 1

2
�jjwjj2: (2)

Moreover, kernel method is widely utilized to map samples
to a high dimensional space using a nonlinear mapping.
Thus the Kernel Ridge Regression (KRR) is presented by
combining ridge regression with kernel method, and it
learns model in high dimensional space for a better predic-
tion accuracy. The solution vector a can be written in closed
form in Equation (3),

aa ¼ ðKþ �INÞ�1y; (3)

where K is a n-by-n kernel matrix constructed by
Ki;j ¼ fðxi; xjÞ, y is the corresponding n-by-1 regressand
vector. Then a is employed to predict regressands in predic-
tion phase as Equation (4).

y� ¼
XN
i¼1

aikðx�; xiÞ: (4)

2.1.3 Support Vector Regression

Support Vector Machine (SVM) can also be used as a regres-
sion method called Support Vector Regression (SVR), hold-
ing all the key features such as maximal margin that
characterize the algorithm. Both KRR and SVR can learn a
non-linear model by using kernel tricks, while they differ in
the loss functions, i.e., ridge and epsilon-insensitive loss
respectively. In the case of SVR, a margin of tolerance (epsi-
lon) is set to the SVM, and we can tune it to gain the desired
accuracy of our model. The solution is given in Equation (5)
and constrained to Equation (6), where w is the magnitude
of the normal vector to the surface that is being approxi-
mated.

wopt ¼ argmin
1

2
jjwjj2 (5)

jyi �wxij � ": (6)

2.2 Clustering Methods

Many clustering methods are proposed in the literature to
recognize the cluster of different characteristics. In this sub-
section, AHC, K-Means, and MSTC are introduced briefly.

2.2.1 Agglomerative Hierarchical Clustering

Agglomerative Hierarchical Clustering is an important cate-
gory of clustering methods, which makes a set of nested

clusters organized as a hierarchical tree. The Basic algo-
rithm consists of following key steps: start with individual
samples as clusters, merge two nearest clusters successively
until one cluster obtained. Algorithm 1 describes AHC for-
mally. Generally AHC algorithm can produce a better-qual-
ity clustering result. However, the slow convergence speed,
extensive computation operations, and expensive storage
requirements make scaling problematic on a larger dataset.

Algorithm 1. Agglomerative Hierarchical Clustering
Algorithm

1: Let each sample be a cluster.
2: repeat
3: Merge the nearest two clusters as a new one.
4: Update the proximity matrix.
5: until Only one cluster remains.

2.2.2 K-Means

K-Means is one of the most prominent partitional
approaches for clustering. The basic steps are illustrated in
Algorithm 2. K-Means is simple and efficient on a variety of
problems. However, non-globular clusters or clusters of dif-
ferent densities and sizes cannot be solved by K-Means, and
the outliers in data can also affect results. Furthermore, K
value is a hyperparameter specified in advance, which
determines the quality of clustering significantly.

Algorithm 2. K-Means Algorithm

1: Choose K initial sample as centroids.
2: repeat
3: Assign each sample to its nearest centroid to form K

clusters.
4: Recompute K centroids.
5: until Centroids remains unchange.

2.2.3 MST-Based Clustering

The basic idea of MSTC is as follows. First, set a threshold
cluster size k. Then construct MSTs using classic MST algo-
rithms until k clusters obtained. At last, delete the maxi-
mum edge iteratively to obtain exactly k clusters. The
algorithm can obtain a comparatively better result on clus-
ters with irregular boundaries, while it is highly sequential
and computationally intensive [7].

Algorithm 3.MST-Based Clustering Algorithm

1: Compute and sort the pairwise distances.
2: repeat
3: Run MST algorithm to form clusters.
4: until k clusters.

3 METHOD

In this section, we first propose a simple, efficient, and accu-
rate method for large-scale clustering. Sections 3.1 and 3.2
provide the definition of Best Friend Graph and properties
of this new method. They serve as the fundamental data
structure of our method. Then a strategy to decide the opti-
mal clustering aggregation through a well-defined metric is

LI ET AL.: ACCURATE AND EFFICIENT LARGE-SCALE REGRESSION METHOD THROUGH BEST FRIEND CLUSTERING 3131

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

presented in Section 3.3. Next, we use a hybrid structure of
data and model parallelism for parallel regression. Sec-
tion 3.4 presents the detailed description of balanced parti-
tion for data parallelism. It achieves load-balance by
utilizing merge and split operations on the hierarchical clus-
tering structure. At last, the parallel regression method
achieved with model parallelism is described in Section 3.5.

3.1 Best Friend Clustering

Clustering is intuitively inspired by the most fundamental
social relation, friend circle, for detecting the potential
groupings in the data. Existing clustering methods normally
consider relationships between all pairs of samples. This
leads to a slower convergence rate and a large overhead,
which are not adequate for large-scale datasets on distrib-
uted systems. In reality, many of the relationships can be
ignored. Our clustering method arises from the observation
that people often make a decision with their best friends.
Therefore, we simplify the friend cycle by only considering
the most important best friend relationship.

A Best Friend Graph GðV;EÞ is defined on a dataset of n
input samples for clustering. The vertex set V consists of
these n data elements. Each vertex i 2 V is associated with a
directed best friend edge ði; jÞ where the destination j is its
best friend, i.e., i’s nearest neighbor. Note that if there exist
multiple nearest neighbors with the same distance to i, we
simply choose the vertex with the smallest lexicographic
order as the only best friend of i. Therefore, a Best Friend
Graph GðV;EÞwith jV j ¼ n vertices contains n directed best
friend edges. Fig. 1 illustrates a tractable example of the
Best Friend Graph. We take 12 representative cities from
Global Cities Index [45] as a study case. The geographical
distances among them are calculated and 12 directed edges
identifying the best friend relationships among them.

Based on the Best Friend Graph, a cluster is defined as a
group of connected vertices. Evidently, the city samples are
clustered into four groups by related friends in the first
step. The clusters distinguished by Best Friend Clustering
are consistent with the geographic taxonomies. For exam-
ple, Los Angeles and San Francisco are recognized as the
Western US. Chicago, Washington DC, and New York City
are then classified as the Eastern US.

Let TkðVk;EkÞ be a connected subgraph k in G and vk ¼
jVkj. Specifically, each new cluster is represented by a centroid
xk. The centroid xk representing Tk is updated by averaging
all vertices xi that have been assigned to this cluster in Equa-
tion (7). To find it arithmetically, one computes the arithmetic
mean of the xi’ coordinates separately for each dimension.

xk ¼ 1

vk

X
xi2Vk

xi: (7)

We can then build a new Best Friend Graph of all gener-
ated cluster centers in the previous step. In our example, the

four clusters are further combined into two groups as illus-
trated in Fig. 2. We recursively apply this approach to the
new clusters until there is only one cluster containing all the
samples. The whole process converges quickly in logarith-
mic time as a cluster contains at least two samples in each
hierarchy. Furthermore, the computation and communica-
tion time are reduced progressively with hierarchies.

3.2 Properties

In this subsection, we analyze several crucial properties of
Best Friend Graph, which are the basis to decide the optimal
aggregation.

Lemma 3.1. There exists at least one directed cycle in a Best
Friend Graph.

Proof. If we replace all directed edges with undirected
edges, a Best Friend Graph becomes an undirected graph
with n vertices and n edges. By induction, we can easily
prove that it involves at least one undirected cycle. Trans-
forming the edges on the cycle back to directed edges, we
obtain a directed cycle. Otherwise, there must be one ver-
tex i associated with two best friend edges ði; �Þ on the
cycle, a contradiction to the best friend graph definition.tu

Lemma 3.2. Each weakly connected component of a Best Friend
Graph contains one and only one directed cycle.

Proof. Each weakly connected component G0ðV 0; E0Þ of a
Best Friend Graph GðV;EÞ is still a Best Friend Graph
according to the definition. With Lemma 3.1, G0 contains
at least one cycle. Thus we obtain jE0j � jV 0j. We must
have jE0j ¼ jV 0j, i.e., only one cycle in G0, otherwise will
get jEj > jV j ¼ n, contradicting the Best Friend Graph
definition. tu

Lemma 3.3. The edge weights on a directed path of a Best Friend
Graph are non-increasing.

This is obvious from the definition. For example, for the
directed path i! j! k, we have vði; jÞ � vðj; kÞ, otherwise
j’s best friend should be i rather than k.

Lemma 3.4. The length of a directed cycle in a Best Friend Graph
is two and the weights of edges on a cycle are identical.

Proof. Assume there is only one nearest neighbor to each
vertex, i.e., the weight v of a best friend edge ði; jÞ is
strictly smaller than the distance between i and other ver-
tex vði; jÞ < vði; kÞ; k 6¼ i; j. If there exists a directed cycle
involving more than two vertices, e.g., i! j! k! i, we
have vði; jÞ > vðj; kÞ > vðk; iÞ ¼ vði; kÞ. Thus the best
friend edge of i should be ði; kÞ, a contradiction. tu
Otherwise, we have vði; jÞ � vðj; kÞ � vðk; iÞ ¼ vði; kÞ.

Since ði; jÞ is a best friend edge, we obtain vði; jÞ ¼ vði; kÞ
and vði; jÞ ¼ vðj; kÞ ¼ vðk; iÞ. According to the smallest

Fig. 1. Best Friend Graph with a case study of global cities. Fig. 2. Best Friend Clustering with a case study of global cities.

3132 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

lexicographic order rule in Best Friend Graph definition, we
get an inconsistent lexicographic order j 	 k 	 i 	 j.

Corollary 3.1. Starting from any vertex and traversing along
the Best Friend Graph will enter the cycle.

Definition 3.1. A best friend forest F ðV;EÞ of a Best Friend
Graph GðV;E0Þ is defined by replacing all directed edges with
undirected ones and removing one edge on each cycle.

Theorem 3.1. A connected component, a tree T ðVT ; ET Þ in a
best friend forest is a minimum spanning tree of the correspond-
ing complete graph GðVT ; EÞ.

Proof. Let T �ðVT ; ET�Þ be the MST of the complete graph
GðVT ; EÞ. For an edge ði; jÞ inET� � ET , we obtain an undi-
rected path in T ðVT ; ET Þ. According to Corollary 3.1, the
corresponding directed path connecting i and j in the Best
Friend Graph is one of the following three cases: i! . . .!
j, i . . . j and i! . . .! k . . . j. Since adding
ði; jÞ it to T ðVT ; ET Þ leads to a cycle, there must be an edge
ðu; vÞ in the path that does not belong to T �ðVT ; ET� Þ. In
any of the three path cases, we have vði; jÞ � vðu; vÞ
according to Lemma 3.3. We must have vði; jÞ ¼ vðu; vÞ,
otherwise we will get spanning tree with a smaller weight
by replacing ði; jÞwith ðu; vÞ. This contradicts the assump-
tion that T �ðVT ; ET� Þ is a MST. Repeat the process for all
edges in ði; jÞ in ET� � ET , we will obtain T with a same
weight to T �. Thus T ðVT ; ET Þ is also aMST. tu
Fig. 3 shows the corresponding best friend forest of the

example in Fig. 1. With Theorem 3.1, each connected com-
ponent in Fig. 3 is a minimum spanning tree, and the graph
is a minimum spanning forest F ðV;EÞ.

3.3 Optimal Aggregation

The target of clustering is expected to make high intraclus-
ter compactness and intercluster dispersion [4]. Since a set
of clustering hierarchies are built, we turn to choose an opti-
mal clustering hierarchy as the input to our regression
model by using a rational metric. As discussed in Theo-
rem 3.1, Best Friend Clustering specifies a minimum span-
ning forest for each hierarchy intrinsically, and it connects
all scattered clusters as a whole network. Thus, the cluster-
ing validity is analyzed based on the MST network, where
metrics are quantified by the properties of MST.

Definition 3.2. Let a Ti ¼ ðVi; EiÞ denote a minimum spanning
tree in a best friend forest F . The intracluster compactness ci
for Ti is defined as

ci ¼ 1

ei

X
ðj;kÞ2Ei

vðj; kÞ; (8)

where ei ¼ jEij.

Algorithm 4. Best Friend Forest Construction

Require: visited½
 ¼ 0; c½
 ¼ 0; e½
 ¼ 0;mst num ¼ 0
1: function InitializeBestFriendForest
2: for i ¼ 0! n� 1 do
3: j ¼ findBestFriendðiÞ
4: addEdgeði; j;vði; jÞÞ
5: end for
6: end Function
7: function TraverseMST
8: for i ¼ 0! n� 1 do
9: if !visited½i
 then
10: Search(i)
11: c½mst num
= ¼ e½mst num

12: mst num ¼ mst numþ 1
13: end if
14: end for
15: end Function
16: function Searchi
17: visited½i
 ¼ 1.
18: e½mst num
þ ¼ 1
19: while getNextNeighborði;&kÞ do
20: if (!visited½k
) then
21: c½mst num
þ ¼ getEdgeWeightði; kÞ
22: Search(k)
23: end if
24: end while
25: end Function

Algorithm 4 shows the procedure of the best friend forest
construction and the distance calculation of each connected
component. The first function finds all best friend edges
and records them in a global array. The second function tra-
verses all connected components. It finds an unvisited node
as a root of a MST and feeds it the third function which uti-
lizes the Depth-First Search (DFS) to traverse all the nodes
in the MST and accumulate the number and their weights
in two global arrays c½
 and e½
.
Definition 3.3. Let a best friend forest Fk be the kth hierarchy

produced by Best Friend Clustering. Assume that there are m
clusters T1, T2; . . . ; Tm in Fk, and cluster Ti contains vi sam-
ples. Then the intercluster dispersion di for Ti is defined as

di ¼ minfdðxi; xjÞj1 � j � m; j 6¼ ig; (9)

where xi and xj are the new cluster centers and dðxi; xjÞ
is the euclidean distance between cluster Ti and Tj.

To determine the optimal clustering hierarchy, a metric
measured by hierarchical clustering index (HCI) is defined
in Definition 3.4. It combines the intracluster compactness ci
and the intercluster dispersion di.

Definition 3.4. Let MSTs T1, T2; . . . ; Tm denote clusters in a
best friend forest Fk for the kth dendrogram hierarchy dendro-
gram produced by Best Friend Clustering. Then the HCIðkÞ is
defined as a linear combination of the intracluster compactness
and intercluster dispersion

HCIðkÞ ¼ 1

m

Xm
i¼1

di � ci
di þ ci

� �
; (10)

Fig. 3. Best friend forest with a case study of global cities.

LI ET AL.: ACCURATE AND EFFICIENT LARGE-SCALE REGRESSION METHOD THROUGH BEST FRIEND CLUSTERING 3133

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

and the optimal clustering hierarchy is

kopt ¼ argmaxfHCIðkÞg: (11)

Fig. 4 illustrates the computing process of HCIs for the
global cities example. With scaled distance denoted on each
edge, hierarchical MST results are depicted in Fig. 4 for the
first two clustering hierarchies. From the Definition 3.2 for
intracluster compactness, we have c1 ¼ 1, c2 ¼ ð3þ 5þ 4þ
7Þ=4 ¼ 4:75, c3 ¼ 2, c4 ¼ ð2þ 1Þ=2 ¼ 1:5 in S1, and c1 ¼ 30,
c2 ¼ 16 in S2. Since similar vertices are merged iteratively,
an important observation is that the di for cluster i in Sk is
exactly the best friend weight for vertex i in Skþ1. For
instance, d1 ¼ d2 ¼ 30, d3 ¼ d4 ¼ 16 are obtained in S1 by
the information acquired in S2. Thus, we have HCIð1Þ ¼
1
4

P4
i¼1ðdi�cidiþciÞ ¼ 0:82 by Equation (10). Similarly, we obtain

the value of HCIð2Þ ¼ 0:51 with the new c1 ¼ 30, c2 ¼ 16,
and d1 ¼ d2 ¼ 70 in S2. The specific values of d1 and d2 are
measured by the distance between two new merged clus-
ters, and it is acquired from the new centroids calculated in
S3. Here we give the values d1 ¼ d2 ¼ 70 in S2 straightfor-
ward for brevity. Apparently, the clustering result of S1 is
evaluated better than S2 due to HCIð1Þ > HCIð2Þ. It is
worth noting that HCI is not an introduced parameter but a
metric to measure the clustering quality. It can be combined
with BFC simply for determining an optimal clustering hier-
archy kopt with a maximum HCI automatically. Therefore,
the whole clustering process is still parameter-free.

3.4 Balanced Partitions

Based on the profiling results, we observe that the partitions
by clustering are typically irregular and imbalanced. This
makes computing nodes load-imbalanced, and thus we
need to devise a new partition algorithm to achieve data
parallelism. In our design, a balanced partition on p com-
puting nodes means that the number of samples on each
node is close to np ¼ n=p. Based on the data organization of

clustering results, we propose a balanced partition algo-
rithm by utilizing a backtracking mechanism, which is com-
posed of MERGE and SPLIT operations.

MERGE is performed on the piecemeal clusters with
small sizes. Fig. 5a shows a case with 4 processes on the
clustering result S1. Since we have np ¼ 12=3 ¼ 4, the sizes
of cluster C3 and C4 are too small compared to np. There-
fore, we sort the S1 by cluster size, and merge the small clus-
ters into the same node for a total size close to np on it. It is
worth noting that the models are still trained independently
on each node, which means the objective of MERGE is to
make up the np instead of mixing models on different clus-
ters. In Fig. 5a, cluster C3 and C4 are merged into process 3
as group G3 and G4. The total sizes are 3, 5, and 4 respec-
tively on process 1 to 3, which achieves a balanced partition
for S1.

Algorithm 5. Parallel Regression

Require: n samples for training, k samples for testing, best-
clustered results A

1: p rank of a process
2: Initialize best Mean Squared ErrorMSE� 1
3: Balanced Partitions on n samples in A for Ap

4: function Regression
5: Training(Ap)
6: Testing(Mp)
7: Reduce: MSE=ðPP

p¼1 e
pÞ=k

8: if ðp ¼ 0Þ&&ðMSE < MSE�Þ then
9: MSE� ¼MSE
10: end if
11: end Function
12: function TrainingAp

13: Cp Cluster Number in Ap on Rank p
14: for i ¼ 0! Cp do
15: Training ModelMp

i for Cluster i on Rank p
16: end for
17: end Function
18: function TestingMp

19: Initialize local MSE ep 0
20: for i ¼ 0! k� 1 do
21: if FindNearCLusterðiÞ ¼ C� then
22: Select bestM� for prediction
23: Update ep

24: end if
25: end for
26: end Function

Fig. 4. Hierarchical MST results by Best Friend Clustering.

Fig. 5. Balanced partitions to achieve load balancing on each process. Fig. 5a describes the MERGE for small tasks, while Fig. 5b shows the SPLIT
for large tasks based upon backtracking mechanism. Abbreviated forms are used for city names.

3134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

SPLIT is utilized to separate the large clusters of which
the size is much larger than np. Since the sample pointers in
same clusters are moved together in each iteration, we
achieve SPLIT operation by backtracking mechanism based
on the clustering array structure. A case with 5 processes on
S2 is illustrated in Fig. 5b. In this case, we have np ¼ 12=5 ¼
2:4 while the original cluster C3 are larger than np appar-
ently. Thus we perform backtracking on the S2 by the tracks
of pointers. The backtracked S

0
2 contains 2 new split clusters,

where the size of C
0
3 is still larger than np. Then we perform

another SPLIT to separate C
0
3 into G3 and G4 respectively.

Therefore, the group G1 to G5 are dispatched to nodes
evenly, and they are trained as independent models. By uti-
lizing the backtracking mechanism, a principle is followed
that closer samples are always guaranteed to gather
together after the SPLIT operation, and spatial locality is
also exploited simultaneously.

3.5 Independent Prediction

Parallel regression methods normally construct p indepen-
dently models, where p is the number of processors (hard-
ware parallelism) [48], [51]. They often take p into
consideration from the beginning as an input parameter.

Two major disadvantages exist with this approach. First,
p is essentially irrelevant to the input data and may mis-
match the intrinsic structure of data samples. Our method
employs the Best Friend Graph hierarchically and efficiently
constructs a series of cluster hierarchies that does not
depend on any predefined value. Second, existing methods
may require a data reorganization to improve the load-bal-
ance. However, this procedure may lose the relationship
information among the data that is moved from one cluster
to others and hurts the compactness of the final models.

The parallel regression is summarized in Algorithm 5
formally. First, we perform a training phase in line 5. In
our work, each process contains at least one cluster after
balanced partition, which means corresponding models
are generated by training separately form line 12 to line
17. Then model parallelism is utilized for making predic-
tions independently on each process from line 18 to line
26. For a given test sample x�, we only use the correspond-
ing model M� to perform a prediction if its closest cluster
center is C� on process p. As illustrated in line 23, instead
of conducting communication regularly, the errors are
accumulated on each node first. Reduce operation is only
required at last in line 7 to make statistical analyses. Since
an intact message is cheaper than scattered messages in
MPI communication, the latency overhead is further
reduced by this optimization.

4 IMPLEMENTATION

4.1 Parallelization

To reduce the computation, memory, and communica-
tion overheads, we design an efficient parallel implemen-
tation of our method. The parallelization of the first
function of Algorithm 4 is straightforward. The data
samples are evenly distributed to all processors and the
calculation is parallelized accordingly. The distribution
of the example is shown in Fig. 6 where each process is
dispatched with 3 samples for computing their nearest
neighbors respectively.

The traversal of the best friend forest and the calculation
of compactness, i.e., the second function of Algorithm 4
seems to be an inherently serial task. However, provided
with Lemmas in the previous section, we are able to identify
individual components (trees) with the edge information in
the best friend forest. With Lemma 3.2, we know that each
cycle identifies a tree, and with Lemma 3.4 a cycle is easy to
find by searching its two equal edges.

Algorithm 6 provides the parallel version of the second
function TRAVERSEMST in Algorithm 4. All the best friend
edges are gathered to all processors in line 1. Every proces-
sor then finds all pairs of equal edges by sorting all jV j
edges or using a hash method from line 4 to line 12. The
number of trees in the best friend forest is the number of
pairs of equal edges. Each processor traverses a set of trees,
and the traversal of each tree starts with either of the two
nodes on its cycle in line 14. Overall, it only transfers short
messages that only contain two values: the pairs of nearest
neighbors and the corresponding shortest distances in our
implementation.

Algorithm 6. Parallellization of TRAVERSEMST in Algo-
rithm 4

1: Gather the whole Best Friend Forest
2: hash:initializeðÞ
3: mstNum ¼ 0
4: for i ¼ 0! n� 1 do
5: j ¼ getBestFriendðiÞ
6: if hash:existðði; jÞÞ then
7: startNode½mstNum
 ¼ i
8: mstNumþ ¼ 1
9: else
10: hash:addðði; jÞÞ
11: end if
12: end for
13: parfor i ¼ 0! mstNum� 1 do
14: Search(startNode½i
)
15: end parfor

4.2 Computation

The process of finding the nearest neighbor dominates the
overheads of the computation. For a Best Friend Graph
GðV;EÞ where the vertex set V consists of n data elements,
there is no need to compute a full n� n distance adjacent
matrix on a large-scale dataset in practice. For example, the
best friend can be obtained easily via fast approximate near-
est neighbor methods with O(log(n)) time complexity (such
as FLANN [35], k-d tree [19]).

Fig. 6. Data organization in Best Friend Clustering. Clusters are distin-
guished by colors and boxes in two steps respectively.

LI ET AL.: ACCURATE AND EFFICIENT LARGE-SCALE REGRESSION METHOD THROUGH BEST FRIEND CLUSTERING 3135

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

Instead of using these ready-made fast library, we adopt
euclidean distance for pairwise distance calculation in a
more general implementation. Since the number of data
samples decrease at least half at each recursion, we average
them and use the mean vectors for computing the best
friend. This also simplifies the computation and optimizes
the time complexity from O(n2) to O(nlog(n)), especially
with the best case O(n) by our constant-round convergence.
To further leverage the ability of vector processing units in
modern CPUs, we group vl data samples in a vector register
and perform vl calculations in a SIMD style, where vl is the
maximum number of double elements a register can hold.
This improves the computation efficiency significantly.

4.3 Data Organization

Provided with the load-balancing scheme described in Sec-
tion 3.4, we design a simple data organization method to
guarantee an efficient implementation.

After building the Best Friend Forest in each clustering
hierarchy, sample pointers divided to the same cluster are
swapped to stay together. Each sample actually represents a
cluster which is clustered by points in the last round. The
relative position of these points in a low-hierarchy cluster
are fixed, i.e. they are swapped as a whole big sample point.
This data organization is critical to balanced partition since
it guarantees that the closer samples are in the array, the
more similarities match. Fig. 6 depicts the process for
pointer swaps in each clustering hierarchy. Although Lon-
don, Paris, and Hong Kong are clustered into the same
group in the S2 hierarchy, London and Paris contain more
similarities as they are far away from Hong Kong in the
clustering array. Thus, the load-balancing scheme is imple-
mented simply based on a newly-designed data structure.
The data organization updates as the BFC steps forward,
which only requires negligibly simple pointer swaps with-
out additional operations.

5 EXPERIMENTS

5.1 Setup

Platforms. We develop the library in C++ and our experi-
ments are performed on a high-performance cluster. Each
machine of the cluster is composed of two Intel Xeon Plati-
num 9,242 processors with 2.30 GHz clock speed (turbo
boost frequency of up to 3.80 GHz), which owns 96 physical
cores organized into two sockets. The processor contains a
71.5 MB smart cache. AVX512 instruction set extension is
supported and it’s able to conduct operations for 8 double-
precision floating-point data in a SIMDmanner.

Benchmarks. The experiments are conducted in two parts.
First, the proposed Best Friend Clustering is evaluated with
three classic 2D datasets. Results of K-Means [49], AHC [38]

and MSTC [29] methods are also presented as different
benchmarks for comparison. Then we turn to the evaluation
on convergence, accuracy, and scalability for our regression
library with five real large-scale datasets. Since DCKRR [52]
and BKRR2 [48] are two closely related papers, they are
employed as two benchmarks in this paper. Moreover, we
alternate the clustering methods in BKRR2 with AHC [38]
and MSTC [29] as AHCKRR and MSTKRR respectively.
Thus the experimental configurations for parallel regression
cover the whole spectrum of representative clustering meth-
ods: BFCKRR (Best Friend Clustering), BKRR2 (K-Means),
AHCKRR (Agglomerative Hierarchical Clustering), and
MSTKRR (Minimum Spanning Tree Clustering).

Datasets. Three classic shape datasets are employed to
demonstrate the quality of clustering in Table 1, which can
be obtained in the Clustering Basic Benchmark (CBB) [18].
They represent well-understood clustering problems and
are widely-used benchmarks for checking the applicability
of clustering algorithms [18], [20], [41], [50]. Then Datasets
Million Song Data (MSD) and Cadata are used as two of our
evaluated datasets for regression since they are both used in
the paper of DCKRR and BKRR2 [48]. To further justify the
scaling efficiency of our approach, we use another three real
datasets, which contain the data on higher dimensions and
interdisciplinary research. The details of these five datasets
are sorted by #Train and summarized in Table 2. All these
datasets are available in the UCI Machine Learning Reposi-
tory [15]. The distance measure is also adopted fairly by
using euclidean distance.

5.2 Visualization

For better clarity, the quality of Best friend Clustering is
visualized intuitively in Fig. 7 by utilizing the classic shape
datasets in Table 1. To evaluate the classification perfor-
mance quantitatively, the adjusted mutual information
(AMI) [42] is used in Fig. 7 to measure the similarity
between partitions on ground truth data and the cluster
assignment obtained by the methods. Due to that the perfor-
mance of K-means is greatly influenced by the K value, we
set K with real #labels straightway. Nevertheless, K-means
yields poor results especially on Zahn’s Compound [50]
and it cannot separate the arbitrary shapes smoothly. AHC
and MST clustering outperform K-means in most cases.
Compared with three methods mentioned above, we can
observe that BFC maintains the merges quite well and clus-
ters these data better than the considered benchmarks.

5.3 Convergence

Since the connected samples generated by our clustering
method are grouped at least half recursively, BFC could

TABLE 1
Description of Classic Shape Datasets

Dataset #Samples #Labels #Dimensions

Zahn’s Compound [50] 399 6 2
Aggregation [20] 788 7 2
R15 [41] 600 15 2

TABLE 2
Description of Large Real Datasets

Dataset #Train #Test #Dimensions Field

cadata 18,432 2,208 8 Housing
Proteins 40,730 5,000 9 Biomedicine
APS Failure 60,000 16,000 171 Vehicle
MSD 463,715 51,630 90 Music
Gas Sensor 4,095,000 900,900 20 Chemistry

3136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

reach a fast convergence in O(logN) rounds. The details for
HCIs and #clusters are given in Tables 3 and 4 respectively,
where the best convergent hierarchies are highlighted. The
average sizes for each cluster are 56, 4, 15,000, 453, and
2,379 respectively on five datasets. Moreover, the number of
iterations still falls in low single digits on large-scale data-
sets like Gas Sensor, which illustrates that the clustering is
less sensitive to the increasing training size and appropriate
for scaling cases.

5.4 Accuracy

The proposed balanced partition strategy has little impact
on the accuracy of the model since it reserves the samples
with most similarities in the same cluster. Nonetheless, to
assure the correctness of our implementation, we perform
the configurations scaling from 96 to 12,288 cores and com-
pare with the reported accuracy (measured by MSE). To
give a fair comparison, the best parameters were finely
tuned from the same parameter set to achieve the lowest
MSE in different methods. As shown in Fig. 8, BFCKRR
achieves the lowest MSEs when KRR techniques are
employed. Moreover, BFCLR and BFCSVR could also make
a superior prediction in most cases. Among all considered
baselines, DCKRR and BKRR2 produce a poor quality,
which adopts no samples clustering and K-means clustering
respectively. As the core increases, high accuracy is
obtained steadily by our library while the MSEs of other
baselines ripples drastically. This illustrates that our bal-
anced partition algorithm adds great support to accuracy in
scaling cases.

5.5 Scalability

Fig. 8 also illustrates the scalability for different methods on
five datasets. We observe that our library consistently
achieves high performance on them compared to baselines.
With a larger dataset like Gas Sensor, gaps between them

are further widened and it is even more than 13.6x faster
than BKRR2. Moreover, the time for our library decreases
regularly as we double the number of cores, while both
DCKRR and BKRR2 exhibit a bad scaling performance by a
growing curve. This illustrates that the K-means-based or
DC-based methods are poor in large-scale regression, where
performances are jeopardized cumulatively by the increas-
ingK value and expensive DC operations. With similar par-
allel implementation achieved, MSTKRR outperforms
BKRR2 in most cases. However, AHCKRR suffers from the
lowest performance as agglomerative style algorithms come
with a quadratic time complexity inherently.

To dissect the procedures of our library and see how it
varies as the size of datasets grows, we provide a quantita-
tive look into the cases of two typical datasets, i.e., the small-
est and largest ones. Fig. 9 compares the logarithmic time
for clustering I/O, clustering, regression I/O, regression,
and communication in our library. Here the I/O means all
cost of the non-computational parts except communication.
Upon inspection, it becomes distinct that the increasing
cores also aggravate the communication and I/O cost.
Despite the scaling pressure brought by communication
and I/O, our library still obtains a sustained scaling perfor-
mance. Table 5 shows the analytical proportion and
speedup of two datasets. Interestingly, although the average
proportion on different datasets contains little difference,
our library can obtain a higher speedup on Gas Sensor.
Based on conjoint analyses on Fig. 9, we can observe that
the key contribution lies in the better scaling efficiency of
parallelizable procedures (clustering and regression parts)
on large-scale datasets.

5.6 Discussion

In this subsection, we provide a quick recap on previous
experiments to tease out the contributions from different
aspects of our proposed method.

Fig. 7. Visualization for considered methods on Zahn’s Compound [50] (left), Aggregation [20] (Center), and R15 [41] (right) with AMI score
annotated.

TABLE 3
HIERARCHICAL HCIS IN BEST FRIEND CLUSTERING

Steps 1 2 3 4 5 6 7

Cadata 0.31 0.51 0.26 0.45 0.24 0 -
Proteins 0.65 0.44 0.28 0.14 0.13 0.11 0
APS Failure 0.30 0.56 0.27 0.35 0.58 0.50 0
MSD 0.09 0.25 0.19 0.02 0 - -
Gas Sensor 0.22 0.38 0.62 0.24 0.17 0.13 0

TABLE 4
#CLUSTERS FOR EACH HIERARCHY IN BEST FRIEND CLUSTERING

Steps 0 1 2 3 4 5 6 7

Cadata 18,432 4,737 326 64 8 2 1 -
Proteins 40,730 11,273 724 191 32 6 2 1
APS Failure 60,000 15,230 712 124 11 4 2 1
MSD 463,715 54,307 1,023 60 7 1 - -
Gas Sensor 4,095,000 231,541 13,115 1,721 202 10 2 1

LI ET AL.: ACCURATE AND EFFICIENT LARGE-SCALE REGRESSION METHOD THROUGH BEST FRIEND CLUSTERING 3137

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

We first investigate the classification performance on the
classic shape datasets compared to three typical baselines in
Section 5.2. Apparently, our method could achieve a better
classification intuitively. Then the convergence experiments
in Section 5.3 demonstrate that our method could achieve a
constant convergence stably even confronted with millions
of sample elements. Accuracy experiments in Section 5.4
conduct cases scaling to 12,288 cores on various bench-
marks. Since our balanced partition algorithm captures
most similarities among samples, a competitive result is
obtained on distributed systems. At last, the scalability
experiments demonstrate that our regression library
leveraging BFC outperforms the referenced benchmarks
across a broad variety of configurations in scaling cases.

6 RELATED WORK

Our paper shows closely concerns for two main lines of
research. The first thread is to study the efficient clustering
methods with better-quality on distributed systems. Bah-
mani et al. extended the k-means problems by a MapReduce
algorithm on distributed nodes [5]. Ene et al. optimized the
greedy algorithm on MapReduce to solve the k-center prob-
lems and the local search strategy to address the k-median

problems [16]. Subsequently, several papers studied similar
problems with the MapReduce model [2], [6], [8]. Then Bou-
guettaya et al. built a hierarchy based on a group of cent-
roids generated by K-Means to improve the efficiency of
AHC [10], while it only was implemented for a single node.
As for Graph Clustering, massive efforts were also put into
studying efficient algorithms [1], [3], [13], [17]. Grygorash
et al. presented the Hierarchical euclidean-distance-based
MST clustering algorithm (HEMST). Given the number of
clusters as an input, HEMST accelerate the convergence
progress by merging multiple edges, while the edges larger
than the threshold are required to be sorted and removed in
order [21]. Jin et al. split the clustering problem into various
overlapped subproblems by a Prim algorithm, solved each
subproblem, and then merged them into an overall solu-
tion [26]. However, the MSTs are needed to store at the Map
side and then shuffle to the Reducers. Bateni et al. [7]
extended MST-based method called affinity clustering with
two classic MST algorithms. It still relied heavily on MapRe-
duce and requires moving all the edges to one machine seri-
ally for MSTs after the edges deletion. Moreover, affinity
clustering did not reveal the exact running times and num-
ber of machines used in their experiments [7]. Wang et al.
utilized a divide-and-conquer scheme to construct approxi-
mate MSTs, while the process to detect the long edges of the
MST is also highly sequential at an early stage for cluster-
ing [44], [54]. As a result, an efficient clustering algorithm
competent for parallel computing on large-scale data is in
need crucially to improve the accuracy of K-means, effi-
ciency of AHC, and scalability of GC methods.

The second focus of this paper is closely related to dis-
tributed regression, which suffers from serious scalability
problems in both computation time and memory usage [11].
Mini-batch Gradient Descent (MBGD) was used for training
on batched data [23], while it was proposed for serial imple-
mentation. MapReduce-based methods [22], [47] made com-
putation distributed locally which holds parts of the data.
However, the overall cost in terms of computation and

Fig. 8. Accuracy and scalability collected with the same configurations for different methods on real datasets. Our parallel library includes KRR, LR,
and SVR techniques. They are applied with BFC method and abbreviated to BFCKRR, BFCLR, and BFCSVR respectively. Benchmarks for parallel
regression applied with representative clustering methods are DCKRR (Divide-and-Conquer without clustering) [52], BKRR2 (K-Means) [48],
AHCKRR (Agglomerative Hierarchical Clustering) [38] and MSTKRR(Minimum Spanning Tree Clustering) [29].

Fig. 9. Time dissection on Cadata & Gas Sensor datasets.

3138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

network is high because of the busy synchronization
sweeps. The Divide-and-Conquer algorithm was then
adopted on distributed systems for SVM and KRR [24], [51],
[52]. Parallel SVM (PSVM) is presented recently to decrease
memory and time consumption [9], [34]. Zhang et al. proved
that regression with kernel method is more accurate than
non-kernel methods, and DCKRR designed by them can
outperform all the previous approximate methods [51]. You
et al. [49] presented K-Means kernel Ridge Regression
(KKRR) for efficient regression on clustered data. Recent
work BKRR2 [48] was optimized on KKRR by averaging the
loads on each node and had better accuracy than DCKRR
and KKRR, which was considered as a state-of-the-art
approach for parallel kernel regression. Thus, in this paper,
the focus is paid to the comparison with two closely related
papers DCKRR and BKRR2, which are also elaborated in
the Introduction section.

7 CONCLUSION

In this paper, we propose a Best Friend Clustering
method, which is more accurate, fast, and meanwhile
parameter-free. Then we devise a strategy to determine
the optimal aggregation through a well-defined metric on
distributed systems. Moreover, a balanced partition
inspired by backtracking is devised for load-balance in
parallel implementation. At last, we integrate proposed
methods with regression techniques as a parallel library,
which shows superior performance on convergence,
accuracy, and scalability.

REFERENCES

[1] K. J. Ahn, S. Guha, and A. McGregor, “Analyzing graph structure
via linear measurements,” in Proc. 23rd Annu. ACM-SIAM Symp.
Discrete Algorithms, 2012, pp. 459–467.

[2] P. P. Anchalia, A. K. Koundinya, and N. K. Srinath, “MapReduce
design of k-means clustering algorithm,” in Proc. Int. Conf. Inf. Sci.
Appl., 2013, pp. 1–5.

[3] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev, “Parallel
algorithms for geometric graph problems,” in Proc. 46th Annu.
ACM Symp. Theory Comput., 2014, pp. 574–583.

[4] T. Asano, B. Bhattacharya, M. Keil, and F. Yao, “Clustering algo-
rithms based on minimum and maximum spanning trees,” in
Proc. 4th Annu. Symp. Comput. Geometry, 1988, pp. 252–257.

[5] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable k-means++,” Proc. VLDB Endowment, vol. 5, no. 7, pp.
622–633, Mar. 2012.

[6] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means
and k-median clustering on general topologies,” in Proc. 26th Int.
Conf. Neural Inf. Process. Syst., 2013, pp. 1995–2003.

[7] M. H. Bateni et al., “Affinity clustering: Hierarchical clustering at
scale,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 6867–6877.

[8] M. Bateni, A. Bhaskara, S. Lattanzi, and V. S. Mirrokni,
“Distributed balanced clustering via mapping coresets,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2014, pp. 2591–2599.

[9] R. Bekkerman, M. Bilenko, and J. Langford, Scaling Up Machine
Learning: Parallel and Distributed Approaches, Cambridge, U.K.:
Cambridge Univ. Press, 2011.

[10] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, and A. Song, “Efficient
agglomerative hierarchical clustering,” Expert Syst. Appl., vol. 42,
no. 5, pp. 2785–2797, 2015.

[11] C. L. P. Chen and C.-Y. Zhang, “Data-intensive applications, chal-
lenges, techniques and technologies: A survey on big data,” Inf.
Sci., vol. 275, pp. 314–347, 2014.

[12] G. Chen, X. Song, H. Zeng, and S. Jiang, “Scene recognition with
prototype-agnostic scene layout,” IEEE Trans. Image Process.,
vol. 29, pp. 5877–5888, 2020.

[13] R. Chitnis et al., “Kernelization via sampling with applications to
finding matchings and related problems in dynamic graph
streams,” in Proc. 27th Annu. ACM-SIAM Symp. Discrete Algo-
rithms, 2016, pp. 1326–1344.

[14] N. R. Draper and H. Smith, Applied Regression Analysis, vol. 326.
Hoboken, NJ, USA: Wiley, 1998.

[15] D. Dua and C. Graff, “UCI machine learning repository.”.
[16] A. Ene, S. Im, and B. Moseley, “Fast clustering using MapReduce,”

in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2011, pp. 681–689.

[17] H. Esfandiari, M. Hajiaghayi, V. Liaghat, M. Monemizadeh, and
K. Onak, “Streaming algorithms for estimating the matching size
in planar graphs and beyond,” ACM Trans. Algorithms, vol. 14,
no. 4, pp. 1–23, 2018.

[18] P. Fr€anti and S. Sieranoja, “K-means properties on six clustering
benchmark datasets,” Appl. Intell., vol. 48, no. 12, pp. 4743–4759,
2018.

[19] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM Trans.
Math. Softw., vol. 3, pp. 209–226, 1977.

[20] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,”
ACM Trans. Knowl. Discov. Data, vol. 1, no. 1, pp. 341–352,
2007.

[21] O. Grygorash, Y. Zhou, and Z. Jorgensen, “Minimum spanning
tree based clustering algorithms,” in Proc. 18th IEEE Int. Conf.
Tools Artif. Intell., 2006, pp. 73–81.

[22] Q. He, T. Shang, F. Zhuang, and Z. Shi, “Parallel extreme learning
machine for regression based on MapReduce,” Neurocomputing,
vol. 102, pp. 52–58, 2013.

[23] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for
machine learning lecture 6a overview of mini-batch gradient
descent,” Cited On, vol. 14, no. 8, 2012.

[24] C.-J. Hsieh, S. Si, and I. Dhillon, “A divide-and-conquer solver for
kernel support vector machines,” in Proc. Int. Conf. Mach. Learn.,
2014, pp. 566–574.

TABLE 5
ANALYTICAL PROPORTION AND SPEEDUP FOR DIFFERENT PROCEDURES BY OUR LIBRARY ON CADATA AND GAS SENSOR DATASETS

Dataset Cadata Gas Sensor

Component C.I/O(%)1 C.(%) R.I/O(%) R.(%) M.(%) S.(C.+R.)2 S. C.I/O(%) C.(%) R.I/O(%) R.(%) M.(%) S.(C.+R.) S.

96 2.80 63.98 0.34 28.28 0.84 1.00 1.00 1.88 64.84 0.35 31.51 0.89 1.00 1.00
192 3.58 54.96 0.54 25.75 1.49 1.34 1.18 3.64 62.33 0.67 29.38 3.04 1.85 1.76
384 4.54 46.88 1.54 25.15 4.00 1.74 1.36 5.97 53.34 1.22 27.59 8.67 3.21 2.70
768 5.94 40.41 2.21 22.73 10.73 2.19 1.50 11.00 46.31 2.35 22.80 15.53 5.95 4.27
1536 7.94 31.62 3.39 21.60 25.45 3.18 1.83 14.00 37.21 3.09 21.45 21.79 8.68 5.28
3072 8.48 25.35 4.33 18.22 34.86 3.99 1.88 16.50 26.83 3.78 16.60 29.45 13.61 6.14
6144 10.09 27.21 5.18 14.04 43.01 4.66 2.09 20.27 18.84 4.52 15.54 37.01 21.09 7.53
12288 8.29 20.73 4.48 12.70 39.45 4.38 1.59 21.75 17.46 4.92 14.86 39.12 23.60 7.92
Mean 6.46 38.89 2.75 21.06 19.98 2.81 1.55 11.88 40.90 2.61 22.47 19.44 9.87 4.57

1For better clarity, procedures for clustering, regression, and communication are abbreviated with C., R., and M. respectively.
2The speedup is also abbreviated to S.

LI ET AL.: ACCURATE AND EFFICIENT LARGE-SCALE REGRESSION METHOD THROUGH BEST FRIEND CLUSTERING 3139

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

[25] J. Hu, Y. Pan, T. Li, and Y. Yang, “TW-Co-MFC: Two-level
weighted collaborative fuzzy clustering based on maximum
entropy for multi-view data,” Tsinghua Sci. Technol., vol. 26, no. 2,
pp. 185–198, 2020.

[26] C. Jin, M. M. A. Patwary, A. Agrawal, W. Hendrix, W.-K. Liao,
and A. Choudhary, “DiSC: A distributed single-linkage hierarchi-
cal clustering algorithm using MapReduce,” Work, vol. 23, 2013,
Art. no. 27.

[27] J. Kleinberg and E. Tardos, Algorithm Design. India: Pearson Edu-
cation India, 2006.

[28] M. Kuhn, “Caret: Classification and regression training,” ASCL,
pp. ascl–1505, 2015.

[29] J. Li, X. Wang, and X. Wang, “A scaled-MST-based clustering
algorithm and application on image segmentation,” J. Intell. Inf.
Syst., vol. 54, pp. 501–525, 2020.

[30] J. Li, H. Jiao, J. Wang, Z. Liu, and J. Wu, “Online real-time trajec-
tory analysis based on adaptive time interval clustering algo-
rithm,” Big Data Mining Analytics, vol. 3, no. 2, pp. 131–142, 2020.

[31] K. Li et al., “OpenKMC: A KMC design for hundred-billion-atom
simulation using millions of cores on sunway taihulight,” in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2019,
pp. 1–16.

[32] K. Li, L. Yuan, Y. Zhang, and Y. Yue, “Reducing redundancy in data
organization and arithmetic calculation for stencil computations,” in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2021, Art.
no. 84.

[33] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clus-
tering algorithm,” Pattern Recognit., vol. 36, no. 2, pp. 451–461,
2003.

[34] P. Mitra, C. A. Murthy, and S. K. Pal, “A probabilistic active sup-
port vector learning algorithm,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 3, pp. 413–418, Mar. 2004.

[35] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” VISAPP (1), vol. 2, no.
331/340, 2009, Art. no. 2.

[36] F. Murtagh and P. Contreras, “Algorithms for hierarchical cluster-
ing: An overview,”Wiley Interdiscipl. Rev., Data Mining Knowl. Dis-
cov., vol. 2, no. 1, pp. 86–97, 2012.

[37] G. Pu, L. Wang, J. Shen, and F. Dong, “A hybrid unsupervised
clustering-based anomaly detection method,” Tsinghua Sci. Tech-
nol., vol. 26, no. 2, pp. 146–153, 2020.

[38] T. Sun, C. Shu, F. Li, H. Yu, L. Ma, and Y. Fang, “An efficient hier-
archical clustering method for large datasets with Map-Reduce,”
in Proc. Int. Conf. Parallel Distrib. Comput. Appl. Technol., 2009,
pp. 494–499.

[39] Z. Sun and G. Fox, “Study on parallel SVM based on
MapReduce,” in Proc. Int. Conf. Parallel Distrib. Process. Techn.
Appl., 2012, Art. no. 1.

[40] Y. Tian, R. Zheng, Z. Liang, S. Li, F.-X. Wu, and M. Li, “A data-
driven clustering recommendation method for single-cell RNA-
sequencing data,” Tsinghua Sci. Technol., vol. 26, no. 5, pp. 772–
789, 2021.

[41] C. J. Veenman, M. J. T. Reinders, and E. Backer, “A maximum var-
iance cluster algorithm,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 9, pp. 1273–1280, Sep. 2002.

[42] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures
for clusterings comparison: Is a correction for chance necessary?,”
in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 1073–1080.

[43] N. Wang, G. Guo, B. Wang, and C. Wang, “Traffic clustering algo-
rithm of urban data brain based on a hybrid-augmented architec-
ture of quantum annealing and brain-inspired cognitive
computing,” Tsinghua Sci. Technol., vol. 25, no. 6, pp. 813–825,
2020.

[44] X. Wang, X. Wang, and D. M. Wilkes, “A divide-and-conquer
approach for minimum spanning tree-based clustering,” IEEE
Trans. Knowl. Data Eng., vol. 21, no. 7, pp. 945–958, Jul. 2009.

[45] Wikipedia, “Global city,” 2020. [Online]. Available: https://en.
wikipedia.org/wiki/Global_city#Global_Cities_Index

[46] Z. Xue and H. Wang, “Effective density-based clustering algo-
rithms for incomplete data,” Big Data Mining Analytics, vol. 4,
no. 3, pp. 183–194, 2021.

[47] H. Yang, Z. Luan, W. Li, and D. Qian, “MapReduce workload
modeling with statistical approach,” J. Grid Comput., vol. 10, no. 2,
pp. 279–310, 2012.

[48] Y. You, “Fast and accurate machine learning on distributed sys-
tems and supercomputers,” 2020.

[49] Y. You, J. Demmel, C.-J. Hsieh, and R. Vuduc, “Accurate, fast and
scalable kernel ridge regression on parallel and distributed sys-
tems,” in Proc. Int. Conf. Supercomputing, 2018, pp. 307–317.

[50] C. T. Zahn, “Graph-theoretical methods for detecting and describ-
ing gestalt clusters,” IEEE Trans. Comput., vol. C-20, no. 1, pp. 68–
86, Jan. 1971.

[51] Y. Zhang, J. Duchi, and M. Wainwright, “Divide and conquer ker-
nel ridge regression,” in Proc. 26th Annu. Conf. Learn. Theory, 2013,
pp. 592–617.

[52] Y. Zhang, J. Duchi, and M. Wainwright, “Divide and conquer ker-
nel ridge regression: A distributed algorithm with minimax opti-
mal rates,” J. Mach. Learn. Res., vol. 16, no. 1, pp. 3299–3340, 2015.

[53] X. Zhao, Z. Wang, L. Gao, Y. Li, and S. Wang, “Incremental face
clustering with optimal summary learning via graph convolu-
tional network,” Tsinghua Sci. Technol., vol. 26, no. 4, pp. 536–547,
2021.

[54] C. Zhong, M. Malinen, D. Miao, and P. Fr€anti, “A fast minimum
spanning tree algorithm based on k-means,” Inf. Sci., vol. 295,
pp. 1–17, 2015.

Kun Li received the BE degree in computer sci-
ence and technology from Shandong University,
China, in 2016. He is currently working toward the
PhD degree in computer science with the State
Key Laboratory of Computer Architecture, Insti-
tute of Computing Technology, Chinese Academy
of Sciences, China. His research focuses on par-
allel and distributed systems, high-performance
computing andmachine learning.

Liang Yuan (Member, IEEE) received the PhD
degree from the Institute of Software, Chinese
Academy of Sciences, Beijing, China, in 2013.
He is currently an associate professor with the
State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese
Academy of Sciences, China. His research inter-
ests include large-scale parallel computing and
heterogeneous computing.

Yunquan Zhang (Senior Member, IEEE) received
the PhD degree in computer software and theory
from the Institute of Software, Chinese Academy
of Sciences, Beijing, China, in 2000. He is a full
professor of computer science with the Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing, China. His research interests
include high-performance parallel computing, with
particular emphasis on large scale parallel compu-
tation and programmingmodels, high-performance
parallel numerical algorithms, and performance
modeling and evaluation for parallel programs.

Gongwei Chen received the BE degree from the
School of Information Engineering, University of
Science and Technology Beijing, Beijing, China,
in 2016. He is currently working toward the PhD
degree in computer science with the Key Labora-
tory of Intelligent Information Processing, Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing, China. His research interests
include computer vision, machine learning, and
image processing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: MICROSOFT. Downloaded on August 06,2025 at 00:39:02 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Global_city#Global_Cities_Index
https://en.wikipedia.org/wiki/Global_city#Global_Cities_Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

